

GMnet Manual

Here you can find the manuals for all GMnet products.

GMnet ENGINE Manual

	Getting Started

	Tutorial
	1. What is GMnet ENGINE?

	2. Basic configuration

	3. Setup GMnet PUNCH

	4. Hosting a master server

	5. Starting the engine

	6. Connection done!

	7. Setting up the basic platformer

	8. The network controller

	9. Adding a player

	10. A second room and doors

	11. Overlay that shows the name of connected players

	12. Adding day and night

	13. Chat

	14. Conclusion / What’s next

	15. Bonus: An ONLINE lobby

	16. Bonus: Global Sync

	17. Bonus: A LAN lobby

	18. Bonus: Event Handlers for Connecting/Disconnecting

	19. Bonus: RPC

	Concepts
	Buffer types

	CHAT Interface

	The debug overlay

	F12: Toggle overlay

	F1: All instances

	F2: Visible instances

	F3: Players

	F4: Invisible instances

	F5: Instances in cache

	F6: Global sync

	F7: CHAT Interface Channels

	F8: Signed packets sent

	F9: Signed packets inbox

	F10: Maps and Lists

	F11: Disconnect - Client only

	Check if overlay is enabled

	Delta time and room_speed

	GMnet GATE.TESTER - The master server testing tool

	Local and remote Instances

	mp_map_syncIn and mp_map_syncOut

	PLUS - Master server (GMnet GATE.PUNCH)

	Players and Playerhashes

	Instance scope and rooms

	Signed packets

	States of the engine

	VarGroup SyncTypes (mp_type)

	Tolerance

	PLUS - GMnet PUNCH

	UPnP

	Variable Groups

	Functions
	Sync Functions

	Tools

	Chat

	Online Lobby

	LAN Lobby

	Global Sync

	Events

	Config

	Extending the Engine / Advanced Use
	Interpolation

	Troubleshooting
	Check if client is connected

	Why do i control two instances

	Error on connect

	Fire input not received on client

	Player numbers

	How to quit/disconnect

	How to update
	Recent updates

GMnet PUNCH Manual

	Getting Started
	What is UDP hole punching?

	Requirements

	UPnP

	Features

	Tutorial
	1. Implementing GMnet PUNCH in your game

	2. obj_control

	3. Server

	4. Client

	5. Lobby

	Function reference
	Setup:

	Server:

	Client:

	Tools:

	Lobby:

	GMnet PUNCH/GATE.PUNCH “protocol” (for building your own server)

GMnet GATE PUNCH Manual

You can find the GMnet GATE PUNCH manual here [https://gmnet-engine.org/punchgatemanual].
Please note, that the GMnet GATE PUNCH manual is outdated, as GATE PUNCH will soon be replaced with a new, rewritten, master server

Support

In case the manual couldn’t help you, feel free to go to our forums [https://gmnet-engine.org/forum], we will help you :)

Contribute to this manual

This manual is open source. If you want to contribute to it, visit our Github repository [https://github.com/Parakoopa/GMnet-manual].

Getting Started

GMnet ENGINE is a multiplayer engine for Game Maker: Studio by YoYoGames.
It works by syncing instance variables to other players and has many other features.
If you want to get started and learn how to use GMnet ENGINE, start with the Tutorial.

Note

GMnet ENGINE is bundled with GMnet PUNCH. All functionality is implemented in GMnet ENGINE. You don’t
need to read the PUNCH manual. If you want to use GMnet PUNCH with your own multiplayer engine, please continue
reading the GMnet PUNCH manual instead.

Tutorial

	1. What is GMnet ENGINE?

	2. Basic configuration

	3. Setup GMnet PUNCH

	4. Hosting a master server

	5. Starting the engine

	6. Connection done!

	7. Setting up the basic platformer

	8. The network controller

	9. Adding a player

	10. A second room and doors

	11. Overlay that shows the name of connected players

	12. Adding day and night

	13. Chat

	14. Conclusion / What’s next

	15. Bonus: An ONLINE lobby

	16. Bonus: Global Sync

	17. Bonus: A LAN lobby

	18. Bonus: Event Handlers for Connecting/Disconnecting

	19. Bonus: RPC

1. What is GMnet ENGINE?

GMnet ENGINE allows you to make multiplayer games in Game Maker:
Studio with nearly zero knowledge in networking.

Everything in GMnet ENGINE is done via the key concept of Game
Maker: Objects and Instances.

You simply tell the engine what variables of what object should be
synced and how. The engine takes care of sending and recieving the
data and the whole client and server architecture.

This means your game’s network functions are easy to use and easy to
maintain.

So, let’s waste no time, and let’s get started with making your very
first game with GMnet ENGINE.

2. Basic configuration

In this tutorial we want to make a simple platformer with some neat
little extras to demonstrate what GMnet ENGINE can do. Our platformer
will have:

	Walls/Players/Physics (not Box2D) (obviously)

	Multiple rooms

	An overlay that shows connected players

	A night and day cycle

	A basic chat system

2.1. Adding the engine to a project

Before we can get started, add the asset to an empty project.
Depending on what you want to do, you have three options.

	If you want to follow this tutorial yourself, you should add
ALL scripts and sprites and the object obj_htme to your
project.

	If you want to just read through this tutorial and test the
demo game, simply add everything.

	When starting completely blank or when you want to add the engine to your own game,
add all folders named htme and udphp but not the htme_demo
folders.

2.2. Configuration

Great! No matter what option you chose, you propably want to take a look
at the initiation and configuration, so let me walk you through.

Before we look at the configuration we check the initiation script.
The init can be found in ``scripts/htme/htme_init``.

The first thing you’ll find under initiation is randomize();.
That assures that the random operations Game Maker does are truly
random, which is important for the engine. This is good to know when you make your game.
Thats all for the initiation for now. Let’s go to configuration.

The configuration can be found in ``scripts/htme/htme_config``.

First you see debug level. Valid options can be found
in the enum htme_debug and how debugging works is explained in the
comment. Leave it on the default option for now.

The next thing is gmversionpick. Depending on what version of game maker
you are using you may need to change this.
If you use above 1.4.1567 set this value to 1.
If you use 1.4.1567 or below set this value to 3. If you set it to 3
you need to go to htme_serverStart and comment this line:

switch (gmversionpick)
{
 // You maybe dont got network_create_socket_ext just add // in front of it
 //case 1: self.socketOrServer = network_create_socket_ext(network_socket_udp,port); break;
 case 2: self.socketOrServer = network_create_socket(network_socket_udp); break;
 case 3: self.socketOrServer = network_create_server(network_socket_udp,port,maxclients); break;
 default: htme_error_message_handler("Go to script: htme_serverStart and decomment the one you use!");
}

This is because if you use 1.4.1567 or below you dont got the network_create_socket_ext function.

Let’s skip ahead to ``self.global_timeout``. That’s actually the
only important configuration option and even that can stay on default if
you want. Timeout specifies after how many steps of inactivity the
connection between client and server will die and you will be
disconnected. The default is 5*room_speed which basicly means 5
seconds. When client and server don’t communicate to each other for 5
seconds, they are considered to be disconnected.

So yeah that was all there is to configure for now.

Follow the next steps of the configuration. They will explain how GMnet
ENGINE (or GMnet PUNCH to be precise) enables you to connect to other
players even behind a firewall.

3. Setup GMnet PUNCH

Note

This topic requires GMnet PUNCH enabled. More information below.

If you want GMnet ENGINE can be used to connect players
even if the do not forward ports in their firewall.

To understand this, you need to know, that whenever you want to play a
game with someone there are three options:

	Dedicated servers to play on, like most shooters have

	Forwarding a port on the servers firewall, most common when playing
strategy games or hosting an own dedicated server of some game

	“Hole-Punching” - GMnet PUNCH, which ships with GMnet ENGINE version,
allows UDP Hole Punching. This technique allows two players to connect
to each other even when no ports are forwarded at all. This works most
of the time, however not always. Especially in mobile networks or buisness
networks that might fail. Hole Punching is often used by many games where
multiplayer should be easy to do by the user.

That means if you disable GMnet PUNCH, your players either can’t
play together online, only locally, or the server has to open ports.

3.1. GMnet PUNCH configuration

In htme_config there are several variables you need to change to use
GMnet PUNCH.

self.use_udphp: This is the most obvious one. Set this to
true, to enable GMnet PUNCH.

self.udphp_master_ip and self.udphp_master_port: You
need to set these to the ip and the port of your mediation server. What
a mediation server is, is explained in the next section. You basically
need to host a server, to which server and clients connect to share
their information.

self.udphp_rctintv: How often (in steps) the server should
reconnect to the mediation server to make sure it is still connected. It
is important that the server is connected to the mediation server, so
don’t set this too high. The default option should be fine.

If you don’t have a server yet you can use the ip 95.85.63.183 and the
port 6510 for testing only.

4. Hosting a master server

Note

This topic requires GMnet PUNCH enabled.

Note

GMnet GATE PUNCH is outdated and will be replaced by a new master server in the next version.

To use the magic of GMnet PUNCH you need to host a
mediation/master/rendevouz server. The server is a small application
written in Java that needs to be run on a server with a forwarded/open port.

To explain why you need this, let me explain how the hole punching
works:

	The server connects with the master server (GMnet GATE.PUNCH)
and its port and ip get registered.

	When the clients want to connect
to this server, his port and ip also get registered and sent to the
server. And the client gets the ip and port of the server.

	Now both send UDP packets to each other at the same time: The hole is punched.

We need the master server (GMnet GATE.PUNCH) because we need to make the
server aware of the fact that a client wants to connect.

The download can be found here:

http://gmnet.parakoopa.de/gatepunch

The server is very basic, feel free to adjust it to your needs.

Currently the server binary listens on port 6510 and there to change
it if you don’t want to compile the server yourself, but we will add
that option in the future.

To start it, run: java -jar gmnet_gate_punch.jar from the folder you
saved the server in. Under Windows you might need to replace java
with the full installation path of java. Under linux I recommend
screen to run it in the background on a server.

4.1. Hosting

For cheap hosting I personally recommend digitalocean. Server start
at 0.0015 per hour (5 per month) and you can cancel at every
time.

Google yourself a promo code and you might get two months for free.
There are also tutorial on how to set up java on these servers. They are
basically linux servers with complete access.

If you want to use digitalocean, please use this code to register:
https://www.digitalocean.com/?refcode=1bff6d6dff1a

4.1.1. Some tutorials

If you want to know how to login to the server:
How To Create Your First DigitalOcean Droplet Virtual Server [https://www.digitalocean.com/community/tutorials/how-to-create-your-first-digitalocean-droplet-virtual-server]

For some basic commands and stuff:
An Introduction to Linux Basics [https://www.digitalocean.com/community/tutorials/an-introduction-to-linux-basics]

If you want to install java:
How To Install Java on Ubuntu with Apt-Get [https://www.digitalocean.com/community/tutorials/how-to-install-java-on-ubuntu-with-apt-get]

For transfering the master server:
How To Use Filezilla to Transfer and Manage Files Securely on your VPS [https://www.digitalocean.com/community/tutorials/how-to-use-filezilla-to-transfer-and-manage-files-securely-on-your-vps]

[You can skip the stuff with the keyfile and everything. Simply install
filezilla and connect to sftp://yourip with your username and password]

When you are done simply execute java -jar gmnet_gate_punch.jar

As I said, I recommend install screen, it allows you to run commands
even if you are not logged in, running in the background and you can
just switch to them at any time:
How to Install and Use Screen on an Ubuntu Cloud Server [https://www.digitalocean.com/community/tutorials/how-to-install-and-use-screen-on-an-ubuntu-cloud-server]

You can also create an autostart service for the server and run it on startup.

5. Starting the engine

Great! Now that we are set up, let’s actually make a game.

Before we start, if you want to follow the tutorial make sure again,
that you added all sprites, all scripts and the object obj_htme to
an empty project.

5.1. The menu

Let’s create a very basic menu.

First create a new room called htme_rom_menu. For this
tutorial we are keeping things very basic and we are not using any views.
Set the background color to be black and the dimensions
of the room to be 800x600px.

Add obj_htme to the room. This object should be created in the
first room of every game you create. It is persistent and will exist
even when you change the rooms.

Now create an object called htme_obj_menu. This will control
our basic menu. Add it to the room we just created.

In the Draw-Event put the following code, that will simply display a
message on how to proceed when starting the game:

draw_text(20,20,"Press N for new server and B to connect.");

Add two more events to it. One B-key event and a N-key event.
B will join a server and N create a new one.

5.1.1. Starting the server

In the N-key event add the following code:

///START SERVER

//Ask player for port
var port = real(get_string("On which port should the server listen?","6510"));

//Setup server, on success start game, on failure end the game.
if (htme_serverStart(port,32)) {
 room_goto(htme_rom_demo);
} else {
 show_message("Could not start server! Check your network configuration!");
 game_end();
}

This will first ask the player on which port the server should
run (of course you can also decide to specify a fixed port number).

After that it starts the server using
htme_serverStart(port,maxplayers) on that port and allows a maximum
of 32 players. It checks if the server is running, and if it is, it
goes to the game room that we will create in a second.

5.1.2. Starting the client

In the B-key event add the following code:

///CONECT TO A SERVER

//Ask player for ip & port
var ip = get_string("To which server should we connect?","127.0.0.1");
var port = real(get_string("And on which port is the server running?","6510"));

//Setup client, on success go to waiting room, otherwise end game
if (htme_clientStart(ip, port)) {
 room_goto(htme_rom_connecting); //NOTE THAT WE ARE GOING TO ANOTHER ROOM HERE THAN THE SERVER ABOVE
} else {
 show_message("Could not start client! Check your network configuration!");
 game_end();
}

Now that is slightly more complicated. It asks for both ip and port and then tries to connect using
htme_clientStart(ip, port).

Instead of going to the game room when we are done, we actually
want the client to go to htme_rom_connecting which is a room

we are now going to create. Why? This room will display a message
saying “Connecting...” and there will be an object in it that
waits for the client to be connected. After that we want to
go to the game room.

5.1.2.1. The waiting room htme_rom_connecting

Create a room called htme_rom_connecting that is just like the
first one (but without the objects in it). Now create the object
htme_obj_waitforclient and place it into the room.

In the Draw event put the following code:

draw_text(20,20,"Connecting...");

This will display the message “Connecting...” after the player decided
to start the client.

In the Step-Event put the following:

///Check if client is connected
if (htme_clientIsConnected()) {
 room_goto(htme_rom_demo);
}
if (htme_clientConnectionFailed()) {
 show_message("Connection with server failed!");
 game_restart();
}

The first statement used the htme_clientIsConnected() function to
check if the client is... well connected. If so, we can finally go to the game room.

If the global timeout has been reached, the engine gives up to conect.
In this case the second if-Statement is activated which uses
htme_clientConnectionFailed() to check if the connection failed.
In our example it will simply restart the game.

This waiting room is just an example and you can use different
techniques to display a waiting... message.

6. Connection done!

Theoretically, we could now play the game. Of course, there is no game.
The game will crash if we try to start a server because our game room
htme_rom_demo does not exist.

For now, create an empty room just like you did before and call it
htme_rom_demo.

Now, when you fire up your game twice, you should be able to start
a server on one game, which should lead you to the empty room.

On the other game you should be able to connect to this server
by connecting to the ip 127.0.0.1. If it was successfull, the
“Connecting...” message should disappear, and you’ll find yourself in
the same empty room as the server. Yay!

7. Setting up the basic platformer

We now need to create a simple platformer. Since this is not supposed
to be a tutorial on platformers, and the platformer we are going to
use is simple and pretty bad, simply follow the instructions and copy
the code.

7.1. 1. Setup our game room

Give the game room htme_rom_demo we created a nice background
color and the dimensions 800x600. For this demo, we are not going
to use views.

7.2. 2. Create a wall

Create a solid object, called htme_obj_wall. Give it the sprite
htme_spr_wall. This is our new wall. Place it into the game room,
build some walls, a floor and maybe some platforms.

7.3. 3. Create the player object

Next we are going to create our player.

Create the object htme_obj_player and give it the sprite
htme_spr_player.

Into the create-Event put the following code:

///Setup basic stuff for the demo platformer.
self.pressed_jump = false;
self.pressed_left = false;
self.pressed_right = false;
self.name = "";

/** Totro generates random names and is not part of the main engine, it's
 * another marketplace asset by me :)
 */
var ttr = totro(5,7,1);
self.name = ttr[0];
/** Gives this player a random color. */
self.image_blend = irandom(16777215);
}

The self.pressed... variables will store if our player pressed the
buttons to move or to jump. We need to store this in a variable as a
preperation for later, when we want to add the player to the engine. But
you’ll see :).

Into the step event put the following code:

///Perform platforming!
//This is a very basic example of a platformer. You should not program your physics like this!

if (place_free(x, y+1)) {
 gravity = 0.2;
} else {
 gravity = 0;
 vspeed = 0;
}

self.pressed_jump = keyboard_check(vk_space);
self.pressed_left = keyboard_check(vk_left);
self.pressed_right = keyboard_check(vk_right);

if (self.pressed_jump && (!vspeed)) {
 vspeed = -12
 image_xscale = 1;
 image_angle = 90;
}
if (self.pressed_right) {
 x+=10;
 image_xscale = 1;
 image_angle = 0;
}
if (self.pressed_left) {
 x-=10;
 image_xscale = -1;
 image_angle = 0;
}
if (vspeed < 0) vspeed=vspeed+gravity;

As you can see, we currently just put the button presses into the
variables self.pressed... and check them. We will change that later.

Now create a Collision with htme_obj_wall event and put the
following code in it:

///Set speed to 0 when hitting a top wall
if (!place_free(x, y-16)) {
 move_contact_solid(90,-1);
 vspeed = 0;
}

if (!place_free(x, y+16)) {
 move_contact_solid(270,-1);
 gravity = 0;
 vspeed = 0;
}

Into the draw event, we will put some code to draw the name we
randomly generated in the create event. First put “draw self“” into
the event and then this code:

///Draw nameplate
draw_set_color(image_blend);
draw_set_halign(fa_center);
draw_text(x,y-sprite_yoffset-5-string_height(self.name),self.name);
draw_set_halign(fa_left);
draw_set_color(c_white);

Now, the last thing to do is to place one htme_obj_player in the play room htme_rom_demo.
Every player that joins the game will create its own player object.
If you add two player objects in the room. Every player create two player objects.

Basic platformer: Done!

7.4. 4. Test

Start the game and then start the server. You can now test out how bad
the platformer really is. But hey, it does the job. The next tutorial is
actually related to the engine again.

[image: How it should look like]
How it should look like

8. The network controller

Before we continue, let’s create an object that makes sure, the engine
is still running.

The engine will stop running on the client-side, when the
connection between server and client is lost.

Create the object htme_obj_network_control. Into the
Step-Event put the following code:

///Check if engine running
if (htme_isLostConnection()) {
 htme_error_message_handler("Game Server or Client died! Go back to menu...");

 // Clean other persistent non synced objects from room
 with htme_obj_chat instance_destroy();
 with htme_obj_playerlist instance_destroy();

 room_goto(htme_rom_menu);
}

If htme_isLostConnection() returns true at any point after your client
connected to the server, you can be very certain, that you lost
conection to the server. Into the if Statement, simply put your own
code to handle this scenario. htme_isLostConnection() should always return
false for the server, unless the server dies due to an errror.

Oh, and don’t forget to put the object into the htme_rom_demo.

9. Adding a player

Okay, okay, I know we already added a player in Step 5.

What this title means, is simply that we are now adding the player
to the engine. After this step the player will be synchronized
between all players you connect to your server.

So we are basicly done after this step. The rest of the tutorial is
some more advanced stuff.

9.1. The create event

To set the player up, we only have to make minimal adjustments. Create
a new code block in the create event, and insert it before the
other block.

Start the code block with

mp_sync();

This will tell the engine to sync this object. Once this was created
on one client, this instance wil also be sent to all other players.

If you add one player instance to your room and connect 4 players
togther, each player will have four player instances.

Now we need to tell the engine what variables to sync and how:

mp_addPosition("Pos",5*room_speed);

This will tell the engine to sync the position variables x and y
every 5 seconds. 5*room_speed means 5 seconds. The first argument of
mp_addPosition is the name of group. You can choose that however you
want.

What we just added is a so called variable group. The group is
called “Pos”, get’s synced every 5 seconds and sync the variables x
and y.

Let’s set how the position should be synced:

mp_setType("Pos",mp_type.SMART);

This changes the sync type to the variable group “Pos”. The
default sync type is FAST. We are changing it to SMART. Here is a
list of what every sync type does:

	FAST (default, you don’t have to use mp_setType if you want
to use that): In our case, if we had chosen FAST, the engine would
send the position of our player every 5 seoncds once. Since we
are using UDP for networking, there is no assurance, that it will
actually arrive. That means we don’t know if the other players
actually get our position every 5 seoncds. The packet could get lost.
However, using FAST is very... FAST. You will see when we want to use
FAST later in this section.

	IMPORTANT: When using IMPORTANT, in our case the position would
still be synced every 5 seoncds. However, we are using a special way
in GMnet ENGINE to make sure the packet arrives. Every 5 seconds,
the server/client will flood the other players with the information,
until they respond back, that they got it. That’s how we assure the
information is actually sent. This is however a pretty traffic heavy
operation and using that in too short intervals will cause lagg in
both connection and framerate.

	SMART: This is like IMPORTANT but better. Instead of syncing
every 5 seconds, we will only sync every 5 seconds what has changed.
If only the x position changed, we are not syncing the y position. If
our position has not changed at all, we are not syncing. This is
basicly a more traffic-friendly version of IMPORTANT.

We are using SMART here and relatively large intervals, because we
only sync the position as a backup. As you will see later, we are going
to sync the button inputs every single step. We only sync the position
to make sure, the players don’t get desynchronized.

The** button input later will be synced FAST**. That means **some
packets could be lost**, and after some time the player could be on
two completly different parts of the level, depending on the complexity
of your platformer. To make sure that doesn’t happen, **we reset the
position every 5 seconds**.

Now, the thing is, if we reset it every 5 seconds, it might happen that
the players are just some pixels off. In that case our players might
slightly “flicker” whenever the position resets. That doesn’t look
nice.

Let’s add a little tolerance range. If the position at is less
than 20 pixels away from where it should be, the other players should
not apply this change locally, so it doesn’t flicker that much:

mp_tolerance("Pos",20);

Great. Position is set up. Now, just to make sure, let’s also sync
the basic Game Maker physics and drawing variables:

/**
 * Tell the engine to add the basic drawing variables:
 * image_alpha,image_angle,image_blend,image_index,image_speed,image_xscale
 * image_yscale,visible
 */
mp_addBuiltinBasic("basicDrawing",15*room_speed);
mp_setType("basicDrawing",mp_type.SMART);

/**
 * Tell the engine to add the builtin GameMaker variables:
 * direction,gravity,gravity_direction,friction,hspeed,vspeed
 */
mp_addBuiltinPhysics("basicPhysics",15*room_speed);
mp_setType("basicPhysics",mp_type.SMART);

We don’t need to sync them that frequently. If we sync physics to
frequently that might look weird and we are only syncing the basic
Drawing stuff for the player color (image_blend) which doesn’t
change anyway, and the image_xscale and iamge_angle which
controls how the player faces, which isn’t that critical.

Now we also want to sync the name:

mp_add("playerName","name",buffer_string,60*room_speed);
mp_setType("playerName",mp_type.SMART);

This is using mp_add to sync our own variables. The syntax is
slightly more compelx and we need to do some things to make this work
later, but let’s just see what we got here: * The first argument is
again the name of the group * In the second argument you specify the
names of the variables you want to sync, seperated by commas. We
stored the player name in the “name” variable. * The third argument is
the buffer type. You can find information on which buffer type you
need to use on this manual page. All variables
need to have the same buffer type. buffer_string simply means that
the variable “name” stores a string. * The last argument is the syncing
interval, just as before.

We decide for a 60 seconds interval, because the name will never change.
We could have also used 20 years, that wouldn’t make a difference. We
only need to make sure the engine syncs it on login and some other
critical events, and it does that automatically, no matter what interval
we choose. We still need to make it SMART because we need to make sure
it REALLY arrived at those events.

Next up are the controls. Remember how we stored the button input in
seperate variables? Well now you might know why:

mp_add("controls","pressed_jump,pressed_left,pressed_right",buffer_bool,1);

The “buffer type” is buffer_bool, because our “pressed_” variables
are booleans. 1/0, true/false.

This will sync the button input to all players every single frame no
matter what. We don’t want to have it SMART or IMPORTANT. FAST is the
way to go, since there is no point in checking if the data
arrives, because we are syncing the button input every step anyway.

9.2. Some things needed when using mp_add

Since we are using mp_add to sync our own variables, we need to
make some code changes. We need to send the variables to the engine at
the beginning of the step, and retrieve the data at the end.

The reason fot that is, that in Game Maker there is no way of getting
a variable’s content by accessing it via a
string [http://gmc.yoyogames.com/index.php?showtopic=646036&hl=].
We need to store the values to a map first before the engine can read
them. This is not needed for mp_addPosition,
mp_addBuiltinBasic and mp_addBuiltinPhysics, because we
hardcoded them.

If you don’t know what any of that means what I just said, don’t worry.
It’s complicated.

The only things you need to know, we will explain them now:

For every object where you use mp_add add the following to the
begin step event:

mp_map_syncIn("name",self.name);
mp_map_syncIn("pressed_jump",self.pressed_jump);
mp_map_syncIn("pressed_left",self.pressed_left);
mp_map_syncIn("pressed_right",self.pressed_right);

Replace the names with the names of your synced variables. These are the
variables that we created above for our tutorial player.

All changes to these variables need to be made BEFORE using these
functions. That means you either have to change them in begin step, or
call mp_map_syncIn again after you changed variables. We recommend
the first. And that’s also what we are going to do in a minute.

In the end step event add the following code to retrieve the
variables again:

self.name = mp_map_syncOut("name", self.name);
self.pressed_jump = mp_map_syncOut("pressed_jump", self.pressed_jump);
self.pressed_left = mp_map_syncOut("pressed_left", self.pressed_left);
self.pressed_right = mp_map_syncOut("pressed_right", self.pressed_right);

9.3. Setting up controls for synchonization

Last thing we need to do, is to move this code out of the step event
we created earlier:

self.pressed_jump = keyboard_check(vk_space);
self.pressed_left = keyboard_check(vk_left);
self.pressed_right = keyboard_check(vk_right);

Simply remove it. In begin step, add the following code
before the other code:

if (htme_isLocal()) {
 self.pressed_jump = keyboard_check(vk_space);
 self.pressed_left = keyboard_check(vk_left);
 self.pressed_right = keyboard_check(vk_right);
}

It should now look like this:

if (htme_isLocal()) {
 self.pressed_jump = keyboard_check(vk_space);
 self.pressed_left = keyboard_check(vk_left);
 self.pressed_right = keyboard_check(vk_right);
}
mp_map_syncIn("name",self.name);
mp_map_syncIn("pressed_jump",self.pressed_jump);
mp_map_syncIn("pressed_left",self.pressed_left);
mp_map_syncIn("pressed_right",self.pressed_right);

All the code we just pasted in begin step does, is check if this is
the instance that was locally created and then writes the button
input of the players into the variables.

This way when we have 4 players, we only move the instance we control,
the instance we locally created. The self.pressed_jump... variables
will be changed by the other 3 players for the rest of the three
instances.

Look at the following table from the view of player 1:

	Instance/Player
	Controlled via buttons
	Controlled via engine

	Ours / Player 1
	Yes
	No

	Player 2’ s
	No
	Yes, buttons from Player 2

	Player 3’ s
	No
	Yes, buttons from Player 3

	Player 4’ s
	No
	Yes, buttons from Player 4

9.4. Test

Fire up two games and create a server / connect to 127.0.0.1.

You should now see both players, and should see that we now have a
multiplayer platformer.

10. A second room and doors

Now you know nearly everything needed to make a very simple multiplayer
game.

The next sections will cover the following more advanced, but still not
very difficult, topics:

	Using the multiplayer engine with mutliple rooms

	Working with the data of the multiplayer engine

We are now going to create a second room. Simply** copy**
htme_rom_demo and restructure the walls a bit. Maybe you could also
change the background color. Remove all other objects from the room,
except the walls and ``htme_obj_network_controller``.

There are two aproaches you could use if you want the player to enter
this room:

	Place a new player instance in htme_rom_demo2, make the player
object NOT persistent

	Make the player instance persistent; Persistent objects in Game Maker
exist even after you change the room.

For this tutorial we are using the second approach. The reason for
that, is that we also want to teach you, how persistent objects work
with the instance. But if you solve your game using the first method,
this should also work in most cases. Please note that the second
approach is recommend though.

Make your ``htme_obj_player`` persistent. That’s all we need to do
in the player object if we want him to move to a second room.

Now create the object htme_obj_door with the
spritehtme_spr_door.

Create a Collsion with ``htme_obj_player`` event and add this code:

///CHECK IF DOOR ENTERED
var isLocal;
with (other) {isLocal = htme_isLocal();}

if (isLocal && keyboard_check_pressed(vk_up)) {
 var dest = htme_rom_demo2;
 if (room == htme_rom_demo2) dest = htme_rom_demo;
 room_goto(dest);
}

This checks when a player is standing in front of a door if the other
instance, which is an instance of the object htme_obj_player is our
local player by storing this information in the local variable
isLocal. When it’s our local player (“we”) we change the room. The
room is changed to htme_rom_demo2 when in htme_rom_demo and
viceversa. Place a door in each room.

We are done.

Now start a client and server again and try switching rooms. Everything
should work as you would expect it. If not, check again if you made the
player object persistent and make sure the doors are on the same
position in both rooms.

10.1. Some technical stuff

When you make persistent objects, they are only persistent locally.

That means when another player switches room, they will cease to exist
in your game. When you enter the room they will be resent and recreated
to your client.

Here is a nice little table FOR AN INSTANCE CREATED BY A IN ROOM 1:

[image: The table]
The table

We will extend this table later with a third scenrio that makes the
instances visible/existent at all time for all players.

11. Overlay that shows the name of connected players

We will now create a list that is displayed in the top left corner of
the screen and will look something like this:

[image: A preview of the player list]
A preview of the player list

Create a new object htme_obj_playerlist with no sprite, make it
persistent so it exists in both game rooms, and place it in
htme_rom_demo.

This new object is actually not going to be added to the engine. This
object will simply look for all existing htme_obj_player instances
and write their metadata on the screen.

The only thing we’ll need is a Draw-Event.

Let’s start with drawing the word “Players:” on screen:

draw_set_color(c_white);
draw_text(40,35,"Players:");

Okay, cool, cool. But how on earth do we get all player instances? There
are two possibilites:

	You could use with htme_obj_player {/*Code*/} to loop through all
player instances

	The engine provides some tools to get a list of all connected players
and a function to get an instance that is controlled by a particular
player.

In our case the first solution is the easiest. However we want to teach
you what you can do with the engine, and so we are going to use the
second method. There might be cases where looping through all
instances of an object would be simply to much, for example if you have
a race game with 2 players and 6 cpus and you only want to get data of
the connected players.

var playerlist = htme_getPlayers();

This will give you a ds_list containing the hashes of all players.
Each player is identifed by a random 8 character hash.

To loop over this list, add the following for-loop:

for(var i = 0;i<ds_list_size(playerlist);i++) {
 var player = ds_list_find_value(playerlist,i);
}

player will now be the playerhash of a player. We use this hash to
get a player instance of this player. Inside the for loop after
``var player =...`` insert the following:

var instance = htme_findPlayerInstance(htme_obj_player,player);

This will either return an instance or -1. It will return -1
when the player is in another room, because no instance for this
player exists. And that’s a problem.

Because that means we can’t actually get the name of the player to
display it then. That’s a limitation because we store the player name
with our player object. After this tutorial is over you should be able
to solve this issue, and I challenge you to do so!

Because of this limitation we will simply show “(other room)” in a grey
color, when the player instance does not exist:

if (instance != -1) {
 var name = (instance).name;
 var _image_blend = (instance).image_blend;
} else {
 var name = "(Other room)";
 var _image_blend = c_gray;
}

``name`` now contains the name of the current player and
``_image_blend`` the color.

The following code will draw the sprite and the name:

//Draw small player icon
draw_sprite_ext(htme_spr_player,0,50,(i)*20+70,0.5,0.5,0,_image_blend,1);
//Draw player name
draw_set_colour(_image_blend);
draw_text(70,(i)*20+62,name);

Remember, all of this must go into the for-loop.

Start the game and test it out, our player list should work just fine.

12. Adding day and night

Now we want to add time and a day and night cycle. Obviously we want to
sync the time between all players.

So let’s just create a new object, I guess?

...But wait. If we simply sync a time object using the engine, we will
end up having one time object per player. For 4 players that means we
would have four time objects fighting over each other.

Of course we could tell all objects to only increase the time when it’s
locally, but then they would all have their own time counter and that
would have the same effect of not syncing them at all.

Oh, if there would only be an easy way to fix this...
Oh! Wait! There is!

You can check if the object was created on the server with
htme_isServer(). This way you can** add objects that get
controlled by the server and synced to each player**. You have 1
instance on 4 PCs, instead of 4 instances at 4 PCs.

Let me show you how this works.

Create a new object called htme_obj_time. Set depth to 1 so it will draw in the background behind the player object. And add the following code
in the beginning of the create event:

if (!htme_isServer()) {
 instance_destroy();
 exit;
}

Let’s pretend I’m a client:

I create the instance, see that I’m not the server, instantly
destroy it and then recieve the instance from the server
controlled by the server.

Genius!

After that bit of code we add the code to add our new object to the
engine, which is of course never executed when created clientside:

mp_sync();
mp_add("time","time",buffer_u16,20*room_speed);
mp_setType("time",mp_type.SMART);
//And at the end we set the time to 1000 - this will be noon
self.time = 1000;

This way the** clients recieve the time every 20 seconds**. We are
going to program the counter so, that it counts up, even clientside.
That means **each player’s game counts up on their own**, and the
server **corrects the time if neccessary**.

Because we used ``mp_add`` we need to add the following code to
begin step:

mp_map_syncIn("time",self.time);

And this to end step

self.time = mp_map_syncOut("time", self.time);

The two things left are counting the time up and actually doing
something with it.

12.1. Increasing the time

Remember that, because we use mp_add, all changes to our time
variable need to be made before mp_map_syncIn is called. Because of
that, create a new code block in position 1 of begin step:

///Increase the time. If time is greater than 2000, set to zero.
self.time++;
if (self.time > 2000) self.time = 0;

This will count up our time to 2000 which is midnight, and then reset it
to 0, which is also midnight. 1000 is noon.

If you want to perform actions on these server controlled instances only
by the server use if (htme_isLocal()) {}. Everything inside this
statement will only be executed by the server.

12.2. Day and night

Paste the following code into the Draw-Event. This will change the
background color in the first room depending on time and display the
time. Room 2 will be interior.

///Draw background
if (room == htme_rom_demo) {
 //Draw night/day
 //This is not a good way of doing it, but I'm not in the mood for that :D
 if (self.time == 0) {
 var bgcolor = make_colour_hsv(170,185,0);
 } else if (self.time <= 1000) {
 var bgcolor = make_colour_hsv(170,185,255/100*(self.time)/10);
 } else if (self.time == 1001) {
 var bgcolor = make_colour_hsv(170,185,255);
 } else if (self.time <= 2000) {
 var bgcolor = make_colour_hsv(170,185,255/100*(1000-self.time)/10);
 }
 draw_set_colour(bgcolor);
 draw_rectangle(0,0,room_width,room_height,false);
 //Draw time as debug on screen
 draw_set_colour(c_white);
 draw_text(room_height-70,70,"Time: "+string(self.time));
} else {
 draw_set_colour(c_maroon);
 draw_rectangle(0,0,room_width,room_height,false);
}
draw_set_colour(c_white);

12.3. That’s not right...

Now when testing what we just did, you might realize that it doesn’t
work right. Even if you set htme_obj_time to be
persistent, the time object just vanishes sometimes. Let’s take
a look again at our nice table again:

[image: The nice table]
The nice table

As you can see in this table, if the server is A and A is in Room 2,
the time object will simply disappear on all clients. Or if the server
is in Room 1 and the client(s) in Room 2. And if you don’t even set it
to be persistent, it even disappears for the server if he is in Room 2.
A nightmare!

That’s not good! We want our new time object to allways exist, no matter
what!

So, first, set ``htme_obj_time`` to be persistent. Now,** after
the mp_sync(); in the create event** add this:

mp_stayAlive();

This tells the engine to keep this instance alive, no matter what.
This ONLY works if the object is persistent!

When we add this to our table, things look like this:

[image: The even nicer table]
The even nicer table

As you can see, with stayAlive enabled, the instance always exists.

12.4. Done!

Time and day is done. Test it out!

We are now ready for the final chapter...: A chat system...

13. Chat

In this chapter you will learn a new way of syncing information between
players. This method was designed for chat messages and similiar things.

For this we use the so called CHAT (Custom Handler
for Advanced Traffic) Interface. You will learn how to use it in this
chapter and can find more advanced usages of it in chapter Bonus 5 -
RPC.

First, let’s create an object ``htme_obj_chat``.

We are storing messages in the variable message. Or at least the
last message sent by a player. Then we are syncing it via the
engine, and the local instance of that object will loop through
all chat instances, like we learned when creating the chat overlay. It
will then look for new messages in our “inboxes”, and add them to
a list that contains all messages.

13.1. Adding a CHAT handler

Create a Create-Event and add the following code:

mp_syncAsChatHandler("Chat");

//Setup variables
self.output = ds_list_create();

`mp_syncAsChatHandler <functions/chat/mp_syncAsChatHandler>`__.
This function registers the object to be a sender and reciever for
string messages for the chanel Chat.
`mp_sync <functions/chat/mp_sync>`__ is not needed here. We won’t be
syncing the object itself, only messages. But you’ll see what that means
in a second.

The ds_list ouput is used to store all chat messages.

13.2. Sending a message.

We are going to send a message when the player presses the C-key. Create
a press C-key Event:

self.str_id = get_string_async("Send a chat message:","");

This script uses ``get_string_async`` to ask the player for the
chat message. If you never used that before, things might be a bit
complicated, so let me explain:

get_string_async displays an input box where the player can input
text without locking the game, like get_string would do. That’s
important, because the client or server will loose connection, if the
game is locked.

Instead of returning the message, get_string_async returns a
number, that we need to store. Inside the Dialog Event, which can be
found under Asynchronous we are retrieving the message:

///Process the message the player typed in
var i_d = ds_map_find_value(async_load, "id");
if (i_d == self.str_id) {
 if (ds_map_find_value(async_load, "status")) {
 if (ds_map_find_value(async_load, "result") != "") {
 var message = ds_map_find_value(async_load, "result");
 //Send the message using the CHAT Interface.
 mp_chatSend(message);
 }
 }
}

This may seem a bit complicated, the code checks that the message
entered was valid, but the important code is the code in the most inner
if-clause.

var message = ds_map_find_value(async_load, "result"); retrieves the
message and writes it to the local variable message.

Using `mp_chatSend(message) <functions/chat/mp_chatSend>`__ we are
now sending this message to all players. It will also be sent to
ourself.

13.3. Recieving messages

Messages are stored in a ds_queue, which is filled when new messages
arrived. We will be checking every step if new messages arrived.

In the step event, add the following code:

if htme_isStarted() {
 var queue = mp_chatGetQueue();
 while (ds_queue_size(queue) > 0) {
 var raw_message = ds_queue_dequeue(queue);

The first line uses
mp_chatGetQueue to get the queue
of messages and then we loop through it until it is empty.
ds_queue_dequeue will get the oldest message in the queue
and remove it from the queue.

This message however is “encoded”, so we now use two functions to decode
it:

var sender = htme_chatGetSender(raw_message);
var message = htme_chatGetMessage(raw_message);

htme_chatGetSender and
htme_chatGetMessage will, as
their name might suggest, return the author of the message (the hash of
the player) and the sended message.

So now we have the message. What now?

As you may remember, we gave all our player objects names. We want
to display the sent message together with the name of the player.

To do that, we first have get the name of the player object using the
player hash:

var player_instance = htme_findPlayerInstance(htme_obj_player,sender);
 if (player_instance != -1) {
 var name = (player_instance).name;
 } else {
 var name = "(Someboy in another room)";
 }

This is the same as in the chapter 9, so
check this page of the tutorial for more information.

The last thing we do, is we add the message we recieved to the list we
created in the create event, together with who sent it, seperated by a
”:”.

 //Add to list of chat output
 ds_list_add(self.output,name+": "+message);
 }
}

13.4. Display the chat.

To display the chat, put the following code into the draw-event:

//Get an offset, so we draw the newest line on bottom
var size = ds_list_size(self.output);
var bottomLine = room_height-50;
var offset = size*20;

for(var i = 0;i<size;i++) {
 var line = ds_list_find_value(self.output,i);
 draw_text(50,bottomLine-offset+i*20,line);
}

That draw event is not essential part of the engine, so I’m not
explaining it here. It basically loops over the output list and displays
each line.

We are done. Have fun testing it out!

13.5. Private messages

You can also send private messages to certain players.
mp_chatSend supports a second
argument, where you can use the hash of a player to only sent your
messages to specific players. Try it out!

14. Conclusion / What’s next

You now learned everything there is to know.

Multiplayer with GMnet ENGINE might be a little bit different that what
you are used to, but once you got the hang of it, the possibilites are
endless.

Try extending the demo project we just created with some features.

Why not start with our challenge? Fix the player overlay and the chat
to display the name of the players corectly, no matter what room they
are in.

Play around with the engine for a bit, and eventually you will master
it!

If you have any questions, find bugs or have feature suggestions, follow
the instructions in the Support section.

If you want to learn even more advanced trics, like sending your own
custom packets, check out the “Extending the Engine / Advanced
Use” section.

Have fun creating awesome multiplayer games! And if you do, don’t forget
to tell us, we really want to see, what you can come up with.

PS: If you are stuck with our challenge here’s a solution (encrypted
with Caesar algorithm, shifted 1 letter in the alphabet up):

Dsfbuf b ofx pckfdu uibu tupsft uif obnf pg uif qmbzfst, jotufbe pg iunf_pck_qmbzfs. Nblf ju qfstjtufou boe tubzBmjwf, tp ju bmxbzt fyjtut. Jo uif qmbzfsmjtu boe uif dibu, mppq pwfs ju jotufbe. Bmufsobujwfmz zpv dbo bmtp tupsf uif obnf pg uif qmbzfst jo uif dibu pckfdut.

15. Bonus: An ONLINE lobby

Note

This topic requires GMnet PUNCH enabled.

*NOTE: Version 1.2.0 introduced LAN
lobbys. This chapter only covers the online
lobby*

The update to version 1.0 introduces a new lobby
system for online servers.

That means you can now add an online lobby to your game.

This part of the tutorial will explain everything you’ll need to know.
Before we start, please create a new project and load the sample
project (add all files from the GMnet ENGINE asset).

We now have everything we created in this tutorial and more. The lobby
is one of these things. Let me take you on a tour on how it works.

GMnet PUNCH needs to be activated. Please follow chapter 2 and 3 for
this.

15.1. Testing the lobby

When you press L when starting the game you will be brought to the
demo lobby room. This is a very simple demo room that can only show four
servers. Once we are done, you’ll be able to create an even better
lobby.

To test it, see if a server is online and connect to it via the lobby.
Please note that you have to set up a master server before, as explained
in chapter 3. If you use the demo master server, please note that there
might be “GMnet PUNCH Demo Servers” in the server list. You can not join
them, they were created using the UDPHP demo project. Both use the same
lobby and the same demo master server.

You can also create a server and fire up a second game and see if you
can join it.

15.2. The new concepts: Gamenames

In htme_config there is a new variable you need to change when
creating your own game (keep the default for the demo project though,
otherwise you can’t join demo servers via the lobby):

/**
 * Shortname of this game
 * + version
 * Example: htme_demo100
 **/
self.gamename = "htme_demo100"

This string represents your game and the version of your game. If you
update your game and it’s server is not compatible with older versions,
change this string and you can prevent players from joining older
servers in the lobby (Please note that this is only for the lobby, if
your players are able to connect manually, you need to implement your
own way of kicking him out of the game again after he has connected, see
How can my clients get the gamename and data strings after they
connected? below for more info)

You can change it at any time, for example if you have multiple
gamemodes you want to mark in the lobby via htme_setGamename(name)
and get it via htme_getGamename().

15.3. Data strings

Asside from the gamename string, there are 7 more strings that can be
used to identify your game in the lobby.

Start the demo game and create a server. You will be asked to enter
the name of the server and a description. These are data strings 2
and 3. The demo lobby uses them for these purposes, but when making your
own game, you can use them however you want. 4-8 are unused by the demo
project.

Let’s open the N-key event of htme_obj_menu (this event
creates the server).

You’ll find this part after the server has successfully been created:

htme_setData(2,get_string("How should this server be called (for the lobby)?","GMnet ENGINE Demo Server"));
htme_setData(3,get_string("Enter a server description (for the lobby)?","A server created for the GMnet ENGINE demo project"));

As you can see, we set the server name and description right after the
server was started using htme_setData(n,string). We use 2 for server
name and 3 for description. You can also on the server end retrieve
these strings using htme_getData(n).

If you want to update any data string later, after the server connected
to the master server, you need to use htme_commitData(). This syncs
all data strings to the master server. You MUST NOT use it here, because
the server hasn’t connected to the master server yet!

A note for GMnet PUNCH users: The gamename is data string 1.

15.4. Building the lobby

Ah, the lobby. Finally we are ready to build it.

The room of the lobby is the room udphhtme_lobby. This room only
contains the object obj_udphphtme_lobby. This object controls the
lobby. Let’s dive into it!

15.4.1. The create event

//IF YOU USE GMnet PUNCH - it will only let you connect to GMnet PUNCH servers:
if (!script_exists(asset_get_index("htme_init"))) {
 self.game = "udphp_demo120"
}
//IF YOU USE GMnet ENGINE - it will only let you conect to GMnet ENGINE servers
else {
 self.game = "htme_demo121"
}
//IF YOU USE YOUR OWN SERVER - Change self.game!

///Recieve lobby data from the master server
udphp_downloadServerList(4,"date","DESC",self.game);

First the variable game gets set. We use this to prevent GMnet
ENGINE players from joining GMnet PUNCH servers and vice-versa. As said
before, this object is used in GMnet ENGINE demo project and GMnet PUNCH
standalone demo project, this is why it has seperate code for both.

The important part here is
[udphp_downloadServerList](functions/udphp_downloadServerList). This
will tell GMnet PUNCH (the part of the engine that controls
communication with the master server) to download a list of servers from
the master server. The paramters allow for filtering and sorting the
result, we use this to only get results that match our game name. More
information about what you can filter, can be found on the usage page
of udphp_downloadServerList.

You use your own filtering variables later when creating your lobby.

15.4.2. The networking event

///Waits for master server response
udphp_downloadNetworking();

This code checks if the master server sent the server list and updates
it. This is not included in htme_networking(); and therefor has to
be run here.

15.4.3. The draw event

The draw event is split up into different sub-scripts:

15.4.3.1. ‘Background’, ‘Title and Controls’, ‘Online servers’

Draws some background colors and some text, not important

15.4.3.2. ‘Servers (Loop)’

This draws the actual server list.

Let’s analyze it:

///Servers (Loop)
var l = global.udphp_downloadlist;
for (var i = 0; i<4;i++) {
 draw_text(10,85+80*i,"=("+string(i+1)+")=");

First, the list global.udphp_downloadlist is stored in the local
variable l (because it’s shorter). This ds_list contains all the
servers we got from the master server.

Then it begins a loop that loops through the first 4 servers in the list
we got by the master server, everything is in this loop and then it
draws a nice little number for each server.

if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>i) {

Now, this is the interesting part.

First we check if the downloadlist was already created (it get’s created
once the list has been downloaded). After that we check if it has at
least as many entrys as the server we want to list. For this example we
assume i is 1. That means it checks if there is atleast one server
in the list. If yes, we have an entry we can now draw.

//Get stuff from the downloadlist
var entry = l[| i];
var ip = entry[? "ip"];
var game = entry[? "data1"];
var servername = entry[? "data2"];
var description = entry[? "data3"];

Now the entry (a ds_map) for our server is extracted from the list and
we get the gamename, which is stored in data1, the ip, which is stored
in the key “ip”, the name of the server, which we stored in data2, and
so on.

 draw_text(70,85+80*i,servername+" | "+ip);
 draw_text(70,115+80*i,description);
 }
 }
 draw_line(0,160+80*i,room_width,160+80*i);
}

Now we just draw everything.

15.4.3.3. ‘Footer’

Again, just some text, not important.

15.4.4. The press 1-4 key events

Pressing 1-4 on the keyboard will connect to that game. Let’s see how!

///LOAD GAME SERVER ON SLOT 1
var l = global.udphp_downloadlist;
if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>0) {
 var entry = l[| 0];
 var ip = entry[? "ip"];
 var game = entry[? "data1"];

We again open the downloadlist and check if server 1 is in it, if yes we
continue.

if (game != self.game) {
 //Not compatible game, exit
 show_message("Game server or version is incompatible!");
 exit;
}

Remember the filtering variable we created in the create-event? We use
it here to check if the server is a GMnet ENGINE demo game. If not we
cancel. Please note, that this is propably not needed here, since we
filtered out all, but our game in the create event, when we ran
udphp_downloadServerList.

 //====GMnet PUNCH DEMO ONLY
 if (!script_exists(asset_get_index("htme_init"))) {
 //This code is irrelevant for GMnet ENGINE and has been removed
 }
 //====GMnet ENGINE DEMO ONLY
 else {
 //Setup client, on success go to waiting room, otherwise end game
 //We don't actually know the port, but that doesn't matter, the master
 //server will tell us the port when we connect
 //
 //THE LINE BELOW is equivalent to:
 //if (htme_clientStart(ip, 0)) {
 if (script_execute(asset_get_index("htme_clientStart"),ip, 0)) {
 //Wait for connection success!
 room_goto(asset_get_index("htme_rom_connecting"));
 } else {
 show_message("Could not start client! Check your network configuration!");
 }
 }
 } else {
 //Do nothing - There is no server on this slot
 }
} else {
 //Do nothing - There is no server on this slot
}

This is the rest of the script. We once again check if we are running
the GMnet ENGINE demo project and then we begin connection.

We call htme_clientStart with the ip we got from the list and leave
the port at 0. Why? Because we don’t know the port. But that doesn’t
matter, because when connecting to the server, GMnet ENGINE will
automatically resolve the port using UDPHP.

Afer that we just go to the waiting room. Done! The rest is the default
client connection you know and love.

And this is how you create a lobby! Now go ahead and do it! :)

15.5. How can my clients get the gamename and data strings after they connected?

Now, you might want to get the datastrings and the gamename after you
connected. For example to display the name of the server in a corner, or
to make sure the server is comaptible to the client when connecting
manually.

For this you just create a object like the time syncing object. You sync
it with the engine, so all other players get it and sync 8 variables
that contain the value of the gamename string and the 7 data strings.

If you need help with that, contact me :)

15.6. Anything missing?

If this bonus chapter lacks something important, please let me know. If
you have any problems feel free to contact me. I know this is quite
complicated compared to the rest, so don’t be frustrated when you have
problems.

16. Bonus: Global Sync

The update to version 1.1 added a new feature called
“Global Sync”.

Before you learned how to sync instances between games in this tutorial.
However this concept has one downside: Instances are only created and
controlable by one client. All variables of an instance are
read-only to all other clients. That’s why we needed to create a
seperate chat instance for each player that basicaly all jut synced one
chat variable. That may be fine for a few variables, and in this case
maybe even the best way of doing it, since every player still needs one
“chat outbox”, however you can now sync global variables that are
read- and writeable by all clients at all times.

Summary of Global Sync’s features: Change the value on one end and it
will update on all other ends as well. All ends can update and access
all variables

16.1. How it works

It’s super simple. To store a variable in the Global Sync pool use
this little code:

var value = 1+1;
htme_globalSet("name",value,buffer_u8);

The third argument is the Buffer type/data type.

This will now sync to all clients immediately (using the SMART
syncType.).

You can retrieve this variable via this code on all connected
clients and the server:

var value = htme_globalGet("name")

Please note that this function may return undefined if it wasn’t set
by any of the clients/server yet, so check if it is defined:

if (is_undefined((htme_globalGet("name")) {
 //Nope, that wasn't set yet...
}

17. Bonus: A LAN lobby

Note

This topic requires GMnet PUNCH enabled.

*NOTE: In addition to LAN lobbys, there are also ONLINE
lobbys!

In addition to online lobbys, you can now also create LAN lobbys. In
this tutorial we will explain how. We’ll assume you haven’t read the
online lobby tutorial, but if you have: Creating a LAN lobby is
similiar, but there are some key differences.

This part of the tutorial will explain everything you’ll need to know.
Before we start, please create a new project and load the sample
project (add all files from the GMnet ENGINE asset). ###Testing the
lobby

When you press K when starting the game you will be brought to the
demo lobby room. This is a very simple demo room that can only show four
servers. Once we are done, you’ll be able to create an even better
lobby.

To test it, fire up a demo game on another PC in the network and start a
server. You’ll see the server in the list after a few seconds.

17.1. The new concepts: Gamenames

(This is the same text as in the online lobby tutorial)

In htme_config there is a new variable you need to change when
creating your own game (keep the default for the demo project though,
otherwise you can’t join demo servers via the lobby):

/**
 * Shortname of this game
 * + version
 * Example: htme_demo100
 **/
self.gamename = "htme_demo100"

This string represents your game and the version of your game. If you
update your game and it’s server is not compatible with older versions,
change this string and you can prevent players from joining older
servers in the lobby (Please note that this is only for the lobby, if
your players are able to connect manually, you need to implement your
own way of kicking him out of the game again after he has connected, see
How can my clients get the gamename and data strings after they
connected? below for more info)

You can change it at any time, for example if you have multiple
gamemodes you want to mark in the lobby via htme_setGamename(name)
and get it via htme_getGamename().

17.2. Data strings

(This is the same text as in the online lobby tutorial)

Asside from the gamename string, there are 7 more strings that can be
used to identify your game in the lobby.

Start the demo game and create a server. You will be asked to enter
the name of the server and a description. These are data strings 2
and 3. The demo lobby uses them for these purposes, but when making your
own game, you can use them however you want. 4-8 are unused by the demo
project.

Let’s open the N-key event of htme_obj_menu (this event
creates the server).

You’ll find this part after the server has successfully been created:

htme_setData(2,get_string("How should this server be called (for the lobby)?","GMnet ENGINE Demo Server"));
htme_setData(3,get_string("Enter a server description (for the lobby)?","A server created for the GMnet ENGINE demo project"));

As you can see, we set the server name and description right after the
server was started using htme_setData(n,string). We use 2 for server
name and 3 for description. You can also on the server end retrieve
these strings using htme_getData(n).

If you want to update any data string later, after the server connected
to the master server, you need to use htme_commitData(). This syncs
all data strings to the master server. You MUST NOT use it here, because
the server hasn’t connected to the master server yet!

A note for GMnet PUNCH users: The gamename is data string 1.

17.3. Setting broadcast settings.

By default the servers will broadcast their information to all PCs in
the LAN each 15 seconds. You can change this in htme_config by
changing the value of self.lan_interval

/**
 * Interval the servers broadcast data to the LAN, for the LAN lobby
 * @type real
 */
self.lan_interval = 15*room_speed;

17.4. Building the lobby

Ah, the lobby. Finally we are ready to build it.

The room of the lobby is the room htme_lanlobby. This room only
contains the object htme_obj_lanlobbydemo. This object controls the
lobby. Let’s dive into it!

17.4.1. The create event

self.game = "htme_demo121"
//IF YOU USE YOUR OWN SERVER - Change self.game!

///Recieve lobby data from the master server
htme_startLANsearch(real(get_string("On which port should we search for servers?","6510")),self.game);

This will start searching the LAN for games with the game id
self.game on the port that is asked to the player. More information
on this function can be found in the usage page of
htme_startLANsearch.

17.4.2. The Room end event

///STOP LAN SEARCH
htme_stopLANsearch();

This will stop searching for LAN servers. You should run this if your
player leaves the lobby

17.4.3. The networking event

///LOOKING FOR INCOMING SERVER BROADCASTS
//htme_step doesn't do that btw!
htme_networking_searchForBroadcasts();

This runs the code that actually searches for LAN servers. It waits for
incoming server broadcasts.

17.4.4. The draw event

The draw event is split up into different sub-scripts:

17.4.4.1. ‘Background’, ‘Title and Controls’, ‘Online servers’

Draws some background colors and some text, not important

17.4.4.2. ‘Servers (Loop)’

This draws the actual server list.

Let’s analyze it:

///Servers (Loop)
var l = htme_getLANServers();
for (var i = 0; i<4;i++) {
 draw_text(10,85+80*i,"=("+string(i+1)+")=");

First, the list htme_getLANServers() is stored in the local variable
l (because it’s shorter). This ds_list contains all the servers
we found. It will be filled over time with all servers in the LAN.

Then it begins a loop that loops through the first 4 servers in the list
we got by the master server, everything is in this loop and then it
draws a nice little number for each server.

if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>i) {

Now, this is the interesting part.

Ee check if it has at least as many entrys as the server we want to
list. For this example we assume i is 1. That means it checks if
there is atleast one server in the list. If yes, we have an entry we can
now draw.

//Get stuff from the downloadlist
var entry = l[| i];
var ip = entry[? "ip"];
var port = entry[? "port"];
var game = entry[? "data1"];
var servername = entry[? "data2"];
var description = entry[? "data3"];

Now the entry (a ds_map) for our server is extracted from the list and
we get the gamename, which is stored in data1, the ip, which is stored
in the key “ip”, the name of the server, which we stored in data2, and
so on.

 draw_text(70,85+80*i,servername+" | "+ip+":"+string(port));
 draw_text(70,115+80*i,description);
 }
 }
 draw_line(0,160+80*i,room_width,160+80*i);
}

Now we just draw everything.

17.4.4.3. ‘Footer’

Again, just some text, not important.

17.4.5. The press 1-4 key events

Pressing 1-4 on the keyboard will connect to that game. Let’s see how!

///LOAD GAME SERVER ON SLOT 1
var l = htme_getLANServers();
if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>0) {
 var entry = l[| 0];
 var ip = entry[? "ip"];
 var game = entry[? "data1"];

We again open the downloadlist and check if server 1 is in it, if yes we
continue.

if (game != self.game) {
 //Not compatible game, exit
 show_message("Game server or version is incompatible!");
 exit;
}

Remember the filtering variable we created in the create-event? We use
it here to check if the server is a GMnet ENGINE demo game. If not we
cancel. Although this is not needed if you filtered out other games with
htme_startLANsearch like we did in the create event.

 if (htme_clientStart(ip, port)) {
 //Wait for connection success!
 room_goto(htme_rom_connecting);
 } else {
 show_message("Could not start client! Check your network configuration!");
 }
 } else {
 //Do nothing - There is no server on this slot
 }
} else {
 //Do nothing - There is no server on this slot
}

This is the rest of the script. We call htme_clientStart with the ip
we got from the list the port.

Afer that we just go to the waiting room. Done! The rest is the default
client connection you know and love.

And this is how you create a lobby! Now go ahead and do it! :)

17.5. Anything missing?

If this bonus chapter lacks something important, please let me know. If
you have any problems feel free to contact me. I know this is quite
complicated compared to the rest, so don’t be frustrated when you have
problems.

18. Bonus: Event Handlers for Connecting/Disconnecting

Sometimes you may want to exceute code when players connect or
disconnect. Or you want to prevent players from joining after the game
has started.

In this chapter, we will teach you how you can do that. It is very
easy.

18.1. Basic example

Let’s say you have this script called scr_welcome:

show_message("Cool! Someone connected!");
return true; //- We will come to that later

You want to execute this script, if someone connects. To do that simply
use this code somewhere after the engine was started (obj_htme is
created):

htme_serverEventHandlerConnecting(scr_welcome);

That’s all you have to do. For a script to be run at disconnection,
simply call htme_serverEventHandlerDisconnecting instead.

18.2. What is the return value for?

As you saw in the example above, the script scr_welcome returns
true.

If you are using a script as an event handler for connecting
players, you need to return either true or false (you don’t have to
return anything for the Disconnect-Event).

When your script returns true, the connection is accepted and
the player is connected.

When your script returns false, the connection is refused and
the player will be kicked before he even really connected.

18.3. Getting more information about the player

Both, the disconnect and connect event, provide an argument for your
script.

The connect event gives your script an argument0 containing a
ds_map with the keys port and ip.

The disconnect event also contains this ds_map, but
additionally has a key hash containing the **player
hash** that you can also use.

Here is an example how you can use this information. The server will
refuse all connections from the local computer when using this script:

///somewhere in your code
htme_serverEventHandlerConnecting(scr_no_local_clients);
htme_serverEventHandlerDisconnecting(scr_goodbye);

///scr_no_local_clients(player_map);
var player_map = argument0;

if (player_map[? "ip"] == "127.0.0.1") return false;
else {
 show_message("Cool! "+player_map[? "ip"]+":"+string(player_map[? "port"])+" connected!");
 return true;
}

///scr_goodbye(player_map);
var player_map = argument0;

show_message(":(! "+player_map[? "ip"]+":"+string(player_map[? "port"])+" with the hash "+player_map[? "hash"]+" left!");

19. Bonus: RPC

RPCs (Remote procedure
calls) [http://en.wikipedia.org/wiki/Remote_procedure_call] are used
to execute scripts/code/functions remotely.

For the engine this means RPC enables you to execute scripts on other
clients / servers. After you finished this part of the tutorial you will
have a fully functional way of calling scripts via the network.

This tutorial will also show you how to send the value returned by the
RPC-called script back to the game of the player who called it.

WARNING: Please note that this tutorial does not cover any secruity
mechanisms. You propably want to restrict which scripts can be executed
and who and when clients can execute them and on which targets.

To make RPCs with GMnet ENGINE we will be using the CHAT
Interface. Basic knowledge on how to use that is
required.

**This section is more advanced and good coding skills are required [
don’t fear to try it out though :)] **

19.1. Setup

First we need an object to listen for RPCs and to send RPCs through.

Create an object obj_htme_rpc with the events below, make it
persistent and make sure it is created when clients have connected
or a server was started, and get destroyed when the engine shuts down.

19.1.1. Create Event

mp_syncAsChatHandler("RPC");

19.1.2. Step Event

var queue = mp_chatGetQueue();
while (ds_queue_size(queue) > 0) {
 htmerpc_recieve(ds_queue_dequeue(queue));
}

And create the two scripts ``htmerpc_recieve`` and ``htmerpc_send``.
The will be used to send and recieve RPC calls. And also create the
script ``htmerpc_callback``. This script will later be used to store the
values that the RPC-called scripts return.

19.2. The RPC protocol

We will now create a protocol to send and recieve the RPCs.

19.2.1. The message

Okay, so let’s think about how we can “package” our RPCs.

Each RPC needs to contain a script name and it’s argument. And each RPC
has one recipient that should execute the command.

Let’s use a ds_map for this. GameMaker allows you to convert ds_maps
into JSON [http://en.wikipedia.org/wiki/JSON] which can be sent over
the network and then be decoded again.

Our message will be a ds_map, turned into a json string with the
following contents:

ds_map =>
 [id] => string
 [script] => string
 [argument_count] => real
 [argument0] => string or real (optional)
 [argument1] => string or real (optional)
 ...
 [argument12*] => string or real (optional)

id is used to identify the RPC calls. You will see why this is
important later.

When we later convert these ds_maps into JSON, the message will look
like this:

{"id":"foo","script":"scr_myscript","argument_count":2,"argument0":12.3,"argument1":"Hello World"}

* Only 13 arguments can be used as the script htmerpc_send we will
create now can only take in 16 arguments, and two of them are used for
other things

19.3. Creating a script to send messages

We are now going to write htmerpc_send. This script should be used
anywhere to send RPC commands.

This script will need: * The id of this RPC call. This is used to get
the value that the script that was executed using this call later. *
The script to execute * A target player (where the script should be
executed) * The arguments

So let’s fill the script with this:

///htmerpc_send(id,script,to,[argument0...13])
/* Sends RPC calls to another player */

/*
 * Turn script into a string. You call this function with (htmerpc(my_script,...);
 * my_script will be turned into a number by Game Maker that identifies this script,
 * we turn this into a string to send it over the network, because if you use
 * different versions of your game, this id might not be the same for the same script.
 */
var rid = argument[0];
var script = script_get_name(argument[1]);
var to = argument[2]; //Hash of the player to send this to
var rpc_argument;
if (argument_count > 3) rpc_argument[0] = argument[3];
if (argument_count > 4) rpc_argument[1] = argument[4];
if (argument_count > 5) rpc_argument[2] = argument[5];
if (argument_count > 6) rpc_argument[3] = argument[6];
if (argument_count > 7) rpc_argument[4] = argument[7];
if (argument_count > 8) rpc_argument[5] = argument[8];
if (argument_count > 9) rpc_argument[6] = argument[9];
if (argument_count > 10) rpc_argument[7] = argument[10];
if (argument_count > 11) rpc_argument[8] = argument[11];
if (argument_count > 12) rpc_argument[9] = argument[12];
if (argument_count > 13) rpc_argument[10] = argument[13];
if (argument_count > 14) rpc_argument[11] = argument[14];
if (argument_count > 15) rpc_argument[12] = argument[15];

This “simply” processes the arguments for the script. All arguments for
the RPC script get written in the rpc_argument array. You can also do
this using a loop by the way, which is far more elegant. We will use
argument_count later again to see how many RPC arguments we have.

We actually don’t have that much to do now. We create the ds_map...

var rpc_command = ds_map_create();

...fill it...

rpc_command[? "id"] = rid;
rpc_command[? "script"] = script;

//If argument_count is 4, we have 4 arguments, which means 1 rpc argument etc.
var rpc_argument_count = argument_count-3;
rpc_command[? "argument_count"] = rpc_argument_count;

//Now we loop through all arguments and add them to the list:
for (var i = 0; i < rpc_argument_count; i++) {
 rpc_command[? "argument"+string(i)] = rpc_argument[i];
}

...and convert it to json:

var message = json_encode(rpc_command);
//After that we don't need the map anymore
ds_map_destroy(rpc_command);

That’s all. We can now send the message.
mp_chatSend allows a second argument
called to. This is the hash of the player that should recieve the
message. Exactly what we need! We use a with-Block to call the
mp_chatSend with our RPC object

with (obj_htme_rpc) {
 mp_chatSend(message,to);
}

The message is sent! Let’s process it!

19.4. Recieving RPCs

What’s the point of sending RPCs if we can’t recieve them, right?

In the step event we created earlier we already added a call to
htmerpc_recieve with a message as argument. Let’s create the script.

///htmerpc_recieve(message)
/* Processes RPC calls*/
var message = htme_chatGetMessage(argument0);
var from = htme_chatGetSender(argument0);

Using htme_chatGetMessage we
take the raw message and decode it to get the actual message. We also
store the hash of the player that sent the RPC, because at the end of
this script we want to send a RPC back containing the returned value of
the script. But we’ll come to that in a bit.

Let’s decode the ds_map:

var rpc_command = json_decode(message);

rpc_command will now contain the ds_map we created earlier. Magic!

Let us waste no time and execute the command. This can be done by
combining asset_get_index and script_execute.
asset_get_index turns the string that contains the script name back
into an id and script_execute executes the command using this id.

Because we also want to process the arguments, this may look a bit
ridiculous now, but it works:

var rid = rpc_command[? "id"];
var rpc_argument_count = rpc_command[? "argument_count"];
var result;

if (rpc_argument_count == 0) {
 result = script_execute(asset_get_index(rpc_command[? "script"]));
}

if (rpc_argument_count == 1) {
 result = script_execute(asset_get_index(rpc_command[? "script"]),rpc_command[? "argument0"]);
}

if (rpc_argument_count == 2) {
 result = script_execute(asset_get_index(rpc_command[? "script"]),rpc_command[? "argument0"],rpc_command[? "argument1"]);
}

/** CONTINUE THIS UNTIL 14 **/

if (rpc_argument_count == 13) {
 result = script_execute(asset_get_index(rpc_command[? "script"]),rpc_command[? "argument0"],rpc_command[? "argument1"],rpc_command[? "argument2"],rpc_command[? "argument3"],rpc_command[? "argument4"],rpc_command[? "argument5"],rpc_command[? "argument6"],rpc_command[? "argument7"],rpc_command[? "argument8"],rpc_command[? "argument9"],rpc_command[? "argument10"],rpc_command[? "argument11"],rpc_command[? "argument12"]);
}

And well... that’s it. But wait - now we need to send the value that
this function returned back.

19.5. Returning the value and sending it back

Everything we did so far was fine, but now what if we want to know what
the script returned?

Remember the script htmerpc_callback we created earlier? When we are
done executing the RPC script we send the returned value we stored in
result above back to the sender of the RPC. This script will then
tell the author of the original RPC the returned value.

That means:

	Player A sends RPC to Player B to run scr_myscript which returns
“Hi!”.

	Player B recieves the RPC, runs the script and stores the value in
result.

	Player B sends RPC to Player A to run htmerpc_callback with the
arguments being the id of the original call and the result.

	Player A recieves the RPC, runs the script, notices that it calls
htmerpc_callback and therefor stops (otherwise this would be an
endless loop).

Step 2 and 4 in script (add to the end of htmerpc_recieve):

//Only send returned value if this RPC isn't already about a returned value (otherwise this would result in an endless loop)
if (rpc_command[? "script"] != "htmerpc_callback") {
 //Send returned value back via RPC
 //The id is not relevant for this because we don't track this RPC - we leave it empty.
 htmerpc_send("",htmerpc_callback,from,rid,result);
}

//Destroy the map, we don't need it
ds_map_destroy(rpc_command);

The recieve-Script is now done. We now need to create
htmerpc_callback and add a way to actually get the values.

19.5.1. Storing and retrieving the returned values

But before we do that, we need somewhere to store those values. Let’s
use our obj_htme_rpc for that and a ds_map. It will have the ids as
keys and the returned values as values.

Add it to the create event:

self.returnedValues = ds_map_create();

Okay, so now let’s create htmerpc_callback, this script is actually
incredibly simple:

///htmerpc_callback(id,returnedValue)
/* Reciveves the returned value of RPCs via RPC */

ds_map_add(obj_htme_rpc.returnedValues,argument0,argument1);

That is all. Whenever a RPC call is sent, it will now add the returned
value to the map. You can get it anywhere by using code like this:

///Create event of some object - You can use htme_hash() to generate random ids
self.rpc_id = htme_hash();
htmerpc_send(self.rpc_id,my_cool_script,some_player_hash,0,"Test",3+2);

///Step event

var returnedValue = ds_map_find_value(obj_htme_rpc.returnedValues,self.rpc_id);

//ds_map_find_value returns undefined if the key was not found -> if the returnedValue has not been recieved
//Please make sure the function actually returns something and returns something other than undefined, otherwise this code will never run.
if (!is_undefined(returnedValue)) {

 show_message(returnedValue);
 //After that make sure to delete the key if you don't need it anymore
 ds_map_delete(obj_htme_rpc.returnedValues,self.rpc_id);

}

That’s all!

Here’s a basic RPC protocol for you to improve on. Have any ideas? Be
sue to leave them in our new forums!

When using this for your game, be sure to include error handlers and a
secuity mechanism as explained at the top of the page.

Concepts

	Buffer types
	Strings

	Booleans (Reals with 0/1; false/true)

	Reals (Numbers)

	CHAT Interface
	Tutorial

	Commands

	The debug overlay

	F12: Toggle overlay

	F1: All instances
	Instance details

	F2: Visible instances

	F3: Players

	F4: Invisible instances

	F5: Instances in cache

	F6: Global sync

	F7: CHAT Interface Channels

	F8: Signed packets sent

	F9: Signed packets inbox

	F10: Maps and Lists

	F11: Disconnect - Client only

	Check if overlay is enabled

	Delta time and room_speed
	room_speed

	room_speed limits

	Delta time

	Delta time setup

	GMnet GATE.TESTER - The master server testing tool

	Local and remote Instances

	mp_map_syncIn and mp_map_syncOut
	Technical explanation

	PLUS - Master server (GMnet GATE.PUNCH)

	Players and Playerhashes

	Instance scope and rooms

	Signed packets

	States of the engine

	VarGroup SyncTypes (mp_type)

	Tolerance

	PLUS - GMnet PUNCH

	UPnP

	Variable Groups
	Create a new VarGroup:

	Change the SyncType of the group:

	Give the group a Tolerance:

Buffer types

When using mp_add you need to specify a
buffer type that specifys as which datatype the information is sent.
This is set for all variables in the Variable
Groups.

The buffer types are the same as the ones used by Game
Maker [http://docs.yoyogames.com/source/dadiospice/002_reference/buffers/buffer_write].

Strings

buffer_string

Do not use buffer_text. It’s not supported.

Booleans (Reals with 0/1; false/true)

buffer_bool

Reals (Numbers)

From the Game Maker
manual [http://docs.yoyogames.com/source/dadiospice/002_reference/buffers/buffer_write]:

	Type
	Desciption

	buffer_u8
	An unsigned,
8bit
integer.
This is a
positive
value from 0
to 255.

	buffer_s8
	A signed,
8bit
integer.
This can be
a positive
or negative
value from
-128 to 127
(0 is
classed as
positive).

	buffer_u16
	An unsigned,
16bit
integer.
This is a
positive
value from 0
- 65,535.

	buffer_s16
	A signed,
16bit
integer.
This can be
a positive
or negative
value from
-32,768 to
32,767 (0 is
classed as
positive).

	buffer_u32
	An unsigned,
32bit
integer.
This is a
positive
value from 0
to
4,294,967,29
5.

	buffer_s32
	A signed,
32bit
integer.
This is a
positive
value from 0
to 264 - 1.

	buffer_u64
	An unsigned
64bit
integer.
This can be
a positive
or negative
value from
-(263) to
263 - 1.

	buffer_f32
	A 32bit
float. This
can be a
positive or
negative
value within
the same
range as a
32 bit
signed
integer.

	buffer_f64
	A 64bit
float. This
can be a
positive or
negative
value from
-(263) to
263 - 1.

Floats are numbers with commas (3,2), Integers are numbers without (3).
When syncing a number with commas as an Integer, the value will be
rounded.

CHAT Interface

The CHAT (Custom Handler for Advanced Traffic) Interface is a new way of
syncing information between players.

Instead of using objects and instances, this uses a more classic
approach. Using the CHAT Interface you can send and retrieve string
messages, with the support for multiple channel.

CHAT messages are sent using the IMPORTANT sync
type.

Tutorial

	Creating a chat system with it

	Call scripts over the network using the CHAT Interface
(RPC)

Commands

	mp_syncAsChatHandler for
registering an object to recieve and send messages on a channel.

	mp_chatGetQueue to recieve
new messages.

	mp_chatSend to send messages.

	htme_chatGetMessage to
get the message out of a message.

	htme_chatGetSender to get
the author of a message.

The debug overlay

The debug overlay is a new feature that allows you to do better
debugging. Enable it by setting self.debugoverlay to true in
htme_config.

 Delta time and room_speed

Delta time and room_speed

The engine can use room_speed (default) or delta time.

room_speed

The engine is set to use room_speed as the default timer count.
You use it when you sync objects:

mp_addPosition("Pos",5*room_speed);
mp_add("playerName","name",buffer_string,60*room_speed);

In htme_config:

self.udphp_rctintv = 3*60*room_speed;
self.global_timeout = 5*room_speed;
self.punch_stage_timeout=1*room_speed;
self.lan_interval = 15*room_speed;

Room speed is simple to use, understand and works most of the time.

room_speed limits

Game Lag

If your game experience lag the
room halt and so do the room speed count. Lets say that you are connected to a server and your game lag for 3 seconds. Note that the global_timeout
is set to 5*room_speed = 5 seconds. You and the server got each a counter running. And these counters is not synchronized. Server counter can be on 3 and yours on 1.
This means that your game will disconnect if the server don’t respond within 5 seconds.
But it also means that the server will kick you if you don’t send anything within 5 seconds.
The server got his eyes on his watch and if your lag is on his 3 second count you will be kicked.
Because 3+3 lag=6 seconds.

Different room speeds

Another issue is that your game must have the same room speed in all rooms. Because if you are in a room with speed 30.
And the server is in a room with speed 60. Every second for you is 2 seconds for the server. So you will be kicked.
Because 3*2=6. So after 3 seconds on your counter the server will be on 6 and kick you.

Delta time

Delta time can compensate for lag and different room speed. Because it counts real seconds. If your game lag for 3 seconds.
The counter is still counting.

Delta time setup

You need to setup the engine to use delta time. This means that all timers must be changed to real seconds.
When using room speed you set:

mp_addPosition("Pos",5*room_speed);

But you need to change it to:

mp_addPosition("Pos",5);

This set the time to 5 seconds.
Note: Sometimes you set the time just to 3 to update the position every 3 steps.
But if you activate delta time this means 3 seconds now.
So say your room speed is 30 you must change it to 0.1. Because 3 steps in a room with room_speed 30 is 0.1 seconds.

But we need to set this up. First go to the script ``htme_config``and set:

use_delta_time=true;

You also need to remove all the room_speed in htme_config.

self.udphp_rctintv = 3*60;
self.global_timeout = 5;
self.punch_stage_timeout=1;
self.lan_interval = 15;

And go throught all your synced object and remove the room_speed.

mp_addPosition("Pos",5);
mp_add("playerName","name",buffer_string,60);

 GMnet GATE.TESTER - The master server testing tool

GMnet GATE.TESTER - The master server testing tool

GMnet GATE.TESTER allows you to test your master servers.

It’s currently basicly an online lobby browser for debugging. Run your
master server with the --testing parameter to enable debugging using
this tool.

You can find it at: http://gmnet.parakoopa.de/gatetester

 Local and remote Instances

Local and remote Instances

When you place an instance of an object into a room, that is set up
to be be synced via GMnet ENGINE
(mp_sync(); called in the create-Event),
you will have one local instance of this object in your room, and
one remote instance for each other player you are connected to.

That means,** if you place one instance of object A in your room,
you will have 4 instance if 4 players are playing**. Each player has
one local instance he controls, and the **three other
instances that the other players control**.

You can find out if a instance is local by using
htme_isLocal(); by using this
if-Statement:

if (htme_isLocal()) {
 //Bla
}

everything in the statement will only be executed once for every player,
by the instance that he controls.

If you place 2 instances of an object into the room, you will have 8
instances with 4 players, of which 2 are local and the above code will
be executed by these two instances.

Remember that all code outside the htme_isLocal will run on the remote computer.
This is because when the htme_obj_player sync to the other computer his game will create the same object.
So the create event, step event all events will run on his computer too. So you must make sure that you only run what you
want on the remote computer.
Ex in the htme_obj_player you have this code and this will run when you start the game

// This code will run on your computer
// *************************
self.pressed_jump = false;
self.pressed_left = false;
self.pressed_right = false;
self.name = "";
// *************************

// This code will run on your computer
// *************************
if (htme_isLocal()) {
 var ttr = totro(5,7,1);
 self.name = ttr[0];
 self.image_blend = irandom(16777215);
}
// *************************

The htme_obj_player is synced to all other player and will be created with instance_create(x,y,htme_obj_player).
And you know that when you create an object all events will run. So this will run on the remote computer:

// This code will run on the remote computer
// *************************
self.pressed_jump = false;
self.pressed_left = false;
self.pressed_right = false;
self.name = "";
// *************************

// This code will not run because htme_isLocal()=false with a remote object on a remote computer
// *************************
if (htme_isLocal()) {
 var ttr = totro(5,7,1);
 self.name = ttr[0];
 self.image_blend = irandom(16777215);
}
// *************************

The other players will also sync their htme_obj_player to you so this will run on your computer:

// This code will run on your computer
// *************************
self.pressed_jump = false;
self.pressed_left = false;
self.pressed_right = false;
self.name = "";
// *************************

// This code will not run because htme_isLocal()=false on your computer with a remote object
// Your computer is a remote computer in the other players perspective
// *************************
if (htme_isLocal()) {
 var ttr = totro(5,7,1);
 self.name = ttr[0];
 self.image_blend = irandom(16777215);
}
// *************************

As you can see there is a perspective. In your case all other players object is a remote object and you are local.
But in all other players perspective you are the remote and they are the local.

 mp_map_syncIn and mp_map_syncOut

mp_map_syncIn and mp_map_syncOut

Whenever you use mp_add, you need to do 2
things for each variable you sync with it:

	Add the following to the end step event:
gml self.VARIABLENAME = mp_map_syncOut("VARIABLENAME", self.VARIABLENAME);
Where you replace “VARIABLENAME” with the name of your variable.

	Run the following code whenever you change that variable, we
recommend doing this in the begin step event:
gml mp_map_syncIn("VARIABLENAME",self.VARIABLENAME); This also
needs to be done at least once after you set up the engine if you
don’t put it in begin step.

THIS DOES NOT TO BE DONE FOR ANY OTHER FUNCTION STARTING WITH mp_add.
ONLY WITH mp_add ITSELF!

Technical explanation

The engine needs to know what variables it needs to sync. So if you
execute this code:

mp_add("message","message",buffer_string,5);

Then we know you want to sync the variable message. The
problem/limitation in Game Maker is, that we can’t get the value of the
message variable of this instance now. Why?

Well let me have an example. This works:

var instance; //Some valid instance
var test = (instance).x;
//Test will now have the x position of the instance as value

Now in that case we are directly accessing the x-Position of the
instance. That’s what all other mp_add* functions besides mp_add
itself do, because they can be hardcoded. When writing the code we
already know what to sync and in what order.

We don’t know how your variables are called while coding, so we have to
get them dynamically. Let’s take the following exmaple:

var instance; //Some valid instance
var variable = "x";
//What now???
var test = (instance).variable; //? Doesn't work!
var test = (instance).(variable); //? Doesn't work!
var test = (instance)[variable]; //? Doesn't work!

There’s no way in Game Maker Studio of doing that. That’s why we use a
ds_map to cache your instances variables. Because with a ds_map, that
does work!

var map; //Some valid ds_map that belongs to your instance; That's what you change when using the syncIn and syncOut command
var variable = "x";

var test = ds_map_find_value(map,variable); //Yay! Works!

 PLUS - Master server (GMnet GATE.PUNCH)

PLUS - Master server (GMnet GATE.PUNCH)

See this page of the tutorial:

PLUS - Hosting a master server

A detailed description of how GMnet PUNCH works, can be found in the
manual of GMnet PUNCH [http://gmnet.parakoopa.de/manual/punch].

 Players and Playerhashes

Players and Playerhashes

Players are identified by hash strings.

You can loop through all players using this loop over the list returned
by htme_getPlayers:

var playerlist = htme_getPlayers();
for(var i = 0;i<ds_list_size(playerlist);i++) {
 var player = ds_list_find_value(playerlist,i);
}

player will contain the hash of the player.

This hash can be used by
htme_findPlayerInstance.

You can get the local player (your player) hash by using the variable global.htme_object.playerhash.

You can get a player hash from a synced object by using the objects variable obj_name.htme_mp_player.

 Instance scope and rooms

Instance scope and rooms

Non-persistent instances will disappear if they leave the room. It
doesn’t matter if a local instance or a remote
instance leaves the room, it will always disappear.

Persistent instances will follow the local player into the next room.
That means persistent remote instance will be destroyed, persistent
local instances not.

stayAlive instances (objects where
mp_stayAlive(); was used) that are
also persistent will always follow the local player into a new room, no
matter if it’s a local or remote instance.

Here’s a table that illustrates that:

INSTANCE WAS CREATED BY PLAYER A IN ROOM A [image: Table]

 Signed packets

Signed packets

Signed packets are a special type of packets that are guaranteed to
arrive.

Normally when using UDP multiplayer, packets are sent very fast on the
cost of reliability.

Signed packets give GMnet ENGINE the option to have packets that are
sent with the reliability of TCP. These are used with the sync types
SMART and IMPORTANT and some other internal operations.

You can also use them. Either by using the SMART and IMPORTANT sync
types or by using them with your own packets. For how see “Extending
the Engine / Advanced Use”.

 States of the engine

States of the engine

The engine can be in different states.

	Is the engine running (=Server or Client started)? ->
htme_isStarted returns true

	Are we running the server? ->
htme_isServer returns true

	(Only client) -> Is the client connected to a server? ->
htme_clientIsConnected
returns true

	(Only client) -> Did a connection to the server fail? ->
htme_clientConnectionFailed
returns true

 VarGroup SyncTypes (mp_type)

VarGroup SyncTypes (mp_type)

Each Variable Group can be assigned one
syncType using mp_setType that controls
how the varGroup will be synchonized. They are enum values of the enum
mp_type. FAST actually means mp_type.FAST! The default value, if
you don’t use mp_setType, is mp_type.FAST.

These are your options:

	FAST: The engine sends the variable once in the interval you
set. Since we are using UDP for networking, there is no assurance,
that it will actually arrive. That means we don’t know if the other
players actually get this change. The packet could get lost. However,
using FAST is very fast.

	IMPORTANT: When using IMPORTANT, the variable will still be
synced in the set interval. However, we are using a special way in
GMnet ENGINE to make sure the packet arrives. Every X seconds, the
server/client will flood the other players with the information,
until they respond back, that they got it. That’s how we assure the
information is actually sent. This is however a pretty traffic heavy
operation and using that in too short intervals will cause lagg in
both connection and framerate.

	SMART: This is like IMPORTANT but better. Instead of syncing
every X seconds, we will only sync every X seconds what has changed.
This is basicly a more traffic-friendly version of IMPORTANT.

 Tolerance

Tolerance

Using mp_tolerance you can give each
variable that is a real (a number) a tolerance range in that it will not
be chanegd locally. This is mainly used to make smooth movement and
prevent players from jumping arround a few pixels.

Take as an example the x position:

If the actual x-Position of an instance should be 12 but it’s 15
locally, the change will not be applied locally if the tolerance is
greater than or equal 3.

 PLUS - GMnet PUNCH

PLUS - GMnet PUNCH

See this page of the tutorial:

PLUS - Setup GMnet PUNCH

A detailed description of how udphp works, can be found in the manual
of GMnet PUNCH [http://gmnet.parakoopa.de/manual/punch].

 UPnP

UPnP

UPnP stands for Universal Plug and Play.

GMnet ENGINE use UDP hole punching to make the NAT/router allow online connections.

UPnP automates the port forwarding on the users router or NAT. It sends a command to the router to forward a port.

But not all NATs allow UDP punch. The user must then manually port forward the server port (ex 6510)
or use other methods such as UDP Hole-Punching (as done by GMnet PUNCH) that can also allow online play without UPnP or port forwarding.

By enabling UPnP you allow users who don’t forward their port and that are in
networks that don’t support UDP Hole-Punching to play anyway.

When your users start the server, UPnP will try to port forward the server port for them.
You can enable UPnP in htme_config.

Note

UPnP won’t work 100% for everybody (even if UPnP is supported) when used with the GMNet PUNCH master server until version 1.4.0!

But there is no harm in turning it on anyway.

 Variable Groups

Variable Groups

Variable Groups or VarGroups describe a group of variables of an
instance that are synced via the engine.

Create a new VarGroup:

	mp_add(groupname,variables,datatype,interval);

	mp_addPosition(groupname,interval);

	mp_addBuiltinBasic(groupname,interval);

	mp_addBuiltinPhysics(groupname,interval);

Change the SyncType of the group:

	mp_setType(groupname,syncType);

Give the group a Tolerance:

	mp_tolerance(groupname,tolerance);

 Functions

Functions

	Sync Functions
	mp_add(groupname,variables,datatype,interval)

	mp_addBuiltinBasic(groupname,interval)

	mp_addBuiltinPhysics(groupname,interval)

	mp_addPosition(groupname,interval)

	mp_map_syncIn(varName, variable)

	mp_map_syncOut(varName, variable)

	mp_setType(group,type)

	mp_stayAlive()

	mp_sync()

	mp_tolerance(groupname,tolerance)

	mp_unsync()

	Tools
	htme_clientConnectionFailed()

	htme_clientDisconnect()

	htme_clientIsConnected()

	htme_disconnectNow()

	htme_findPlayerInstance()

	htme_getPlayerNumber(playerhash)

	htme_getPlayers()

	htme_isLocal()

	htme_isLostConnection()

	htme_isServer()

	htme_isStarted()

	htme_serverDisconnect(player)

	htme_serverShutdown(player)

	htme_syncGroupNow()

	Chat
	htme_chatGetMessage(chat_queue_entry)

	htme_chatGetSender(chat_queue_entry)

	mp_chatGetQueue()

	mp_chatSend(message,[to])

	mp_syncAsChatHandler(channel)

	Online Lobby
	udphp_downloadServerList(...)

	LAN Lobby
	tme_startLANsearch(port,[gamefilter])

	Global Sync
	htme_globalGet(name)

	htme_globalSet(name,value,datatype)

	htme_globalSetFast(name,value,datatype)

	Events
	htme_error_message_handler(message)

	htme_serverEventHandlerConnecting(script)

	htme_serverEventHandlerDisconnecting(script)

	Config
	htme_config()

 Sync Functions

Sync Functions

	mp_add(groupname,variables,datatype,interval)
	Description

	Example

	Arguments

	Returns

	mp_addBuiltinBasic(groupname,interval)
	Description

	Example

	Arguments

	Returns

	mp_addBuiltinPhysics(groupname,interval)
	Description

	Example

	Arguments

	Returns

	mp_addPosition(groupname,interval)
	Description

	Example

	Arguments

	Returns

	mp_map_syncIn(varName, variable)
	Description

	Arguments

	Returns

	mp_map_syncOut(varName, variable)
	Description

	Arguments

	Returns

	mp_setType(group,type)
	Description

	Example

	Arguments

	Returns

	mp_stayAlive()
	Description

	Example

	Arguments

	Returns

	mp_sync()
	Description

	Example

	Arguments

	Returns

	mp_tolerance(groupname,tolerance)
	Description

	Example

	Arguments

	Returns

	mp_unsync()
	Description

	Example

	Arguments

	Returns

 mp_add(groupname,variables,datatype,interval)

mp_add(groupname,variables,datatype,interval)

Description

Adds a new group of variables to be synced to
this instance.

Please read this manual page when using mp_add: mp_map_syncIn and
mp_map_syncOut

Example

///Create Event
mp_sync();
mp_add("playerName","name",buffer_string,10*room_speed);;

Arguments

	Name
	type
	description

	group
name
	strin
g
	The name of
the group,
this is only
used locally
to identify
this group,
for example
if you want
to use
mp_setType

	varia
bles
	strin
g
	A list of
local
variables of
the instance
seperated
with commas

	datat
ype
	real,
buffe
r_*
	A value of a
“buffer_”
constant to
specify the
data type of
all
variables in
this group.
See manual
for a list
of datatypes
and their
meanings.
All
datatypes
from enum
mp_buffer_
types
are also
allowed but
should not
be used by
you as a
user!

	inter
val
	real
	The interval
in which the
variable
group get’s
synced with
the other
players

Returns

Nothing

 mp_addBuiltinBasic(groupname,interval)

mp_addBuiltinBasic(groupname,interval)

Description

Adds a new group of variables to be synced to this instance.

The variables are: *
image_alpha,image_angle,image_blend,image_index,image_speed,
image_xscale,image_yscale,visible

Example

///Create Event
mp_sync();
mp_addBuiltinBasic("drawing",10*room_speed);;

Arguments

	Name
	type
	description

	group
name
	strin
g
	The name of
the group,
this is only
used locally
to identify
this group,
for example
if you want
to use
mp_setType

	inter
val
	real
	The interval
in which the
variable
group get’s
synced with
the other
players

Returns

Nothing

 mp_addBuiltinPhysics(groupname,interval)

mp_addBuiltinPhysics(groupname,interval)

Description

Adds a new group of variables to be synced to this instance.

The variables are: *
direction,gravity,gravity_direction,friction,hspeed,vspeed

Example

///Create Event
mp_sync();
mp_addBuiltinPhysics("physics",10*room_speed);

Arguments

	Name
	type
	description

	group
name
	strin
g
	The name of
the group,
this is only
used locally
to identify
this group,
for example
if you want
to use
mp_setType

	inter
val
	real
	The interval
in which the
variable
group get’s
synced with
the other
players

Returns

Nothing

 mp_addPosition(groupname,interval)

mp_addPosition(groupname,interval)

Description

Adds a new group of variables to be synced to this instance.

The variables are: * x,y

Example

///Create Event
mp_sync();
mp_addPosition("pos",10*room_speed);;

Arguments

	Name
	type
	description

	group
name
	strin
g
	The name of
the group,
this is only
used locally
to identify
this group,
for example
if you want
to use
mp_setType

	inter
val
	real
	The interval
in which the
variable
group get’s
synced with
the other
players

Returns

Nothing

 mp_map_syncIn(varName, variable)

mp_map_syncIn(varName, variable)

Description

More information: mp_map_syncIn and
mp_map_syncOut

Arguments

	Name
	type
	description

	varName
	string
	Name of the variable to store

	variable
	any
	Value of that variable

Returns

Nothing

 mp_map_syncOut(varName, variable)

mp_map_syncOut(varName, variable)

Description

More information: mp_map_syncIn and
mp_map_syncOut

Arguments

	Name
	type
	description

	varNa
me
	strin
g
	Name of the
variable to
get

	varia
ble
	any
	Value of the
variable
that the
instance
currently
has. Will
later be
used to
compare them
to values in
the engine.
Currently
this is
returned if
the engine
has no valid
data for
this
varName.

Returns

Value of varName in the variable map of this instance

 mp_setType(group,type)

mp_setType(group,type)

Description

Changes the type with which a group will be synced to the other clients.

More information: VarGroup SyncTypes (mp_type)

Example

///Create Event
mp_sync();
mp_addBuiltinPhysics("physics",10*room_speed);
mp_setType("physics",mp_type.SMART);

Arguments

	Name
	type
	description

	group
name
	strin
g
	The name of
the group of
which you
want to
change the
type of

	inter
val
	real
	The values
of the enum
mp_type can
be seen in
htme_config
or
the manual.

Returns

Nothing

 mp_stayAlive()

mp_stayAlive()

Description

Configure this instance to be in stayAlive mode and be room independent.
Instance NEEDS to be persistent!

More information: Instance scope and rooms.

Example

///Create Event
mp_sync();
mp_stayAlive();

Arguments

None

Returns

Nothing

 mp_sync()

mp_sync()

Description

Configures this instance to be synced via the GMnet ENGINE. This must be
called before all other mp commands.

Example

///Create Event
mp_sync();
mp_addPosition("Pos",5*room_speed);

Arguments

None

Returns

Nothing

 mp_tolerance(groupname,tolerance)

mp_tolerance(groupname,tolerance)

Description

More information: Tolerance.

Example

///Create Event
mp_sync();
mp_addPosition("pos",1);
mp_tolerance("pos",10);

Arguments

	Name
	type
	description

	groupname
	string
	The name of the group

	interval
	real
	The tolerance to apply

Returns

Nothing

 mp_unsync()

mp_unsync()

Description

Removes an instance from the engine and * if not
[local]concepts/instances): destroys it [DO NOT USE IT ON REMOTE
INSTANCES!] * if local: informs server which then informs all players.

Does NOT destroy local instances! You have to do that yourself when
calling this manually!

Example

///Step
if (somethinghappend && htme_isLocal()) {
 mp_unsync();
 instance_destroy();
}

Arguments

None

Returns

Nothing

 Tools

Tools

	htme_clientConnectionFailed()
	Description

	Arguments

	Returns

	htme_clientDisconnect()
	Description

	Arguments

	Returns

	htme_clientIsConnected()
	Description

	Arguments

	Returns

	htme_disconnectNow()
	Description

	Arguments

	Returns

	htme_findPlayerInstance()
	Description

	Arguments

	Returns

	htme_getPlayerNumber(playerhash)
	Description

	Arguments

	Returns

	htme_getPlayers()
	Description

	Arguments

	Returns

	htme_isLocal()
	Description

	Arguments

	Returns

	htme_isLostConnection()
	Description

	Arguments

	Returns

	htme_isServer()
	Description

	Arguments

	Returns

	htme_isStarted()
	Description

	Arguments

	Returns

	htme_serverDisconnect(player)
	Description

	Arguments

	Returns

	htme_serverShutdown(player)
	Description

	Arguments

	Returns

	htme_syncGroupNow()
	Description

	Arguments

	Returns

 htme_clientConnectionFailed()

htme_clientConnectionFailed()

Description

Check if the client did not manage to connect in time. Only call this
after creating a client, otherwise the result will be invalid.

Arguments

None

Returns

True if the engine is operating in client mode and gave up to connect.

 htme_clientDisconnect()

htme_clientDisconnect()

Description

Disconnects from the server.

Arguments

None.

Returns

Nothing.

 htme_clientIsConnected()

htme_clientIsConnected()

Description

Check if the client is connected.

Arguments

None

Returns

True if the engine is running in client mode and if the client
successfully connected to the server.

 htme_disconnectNow()

htme_disconnectNow()

Description

This will close and disconnect a server or client. This will also clean the engine and you can go to the main room if the script return true.
Use this when you want to exit the game and go back to the main menu.

if htme_disconnectNow()
{
 room_goto(rm_main);
}

Arguments

None

Returns

True if ok to disconnect.

 htme_findPlayerInstance()

htme_findPlayerInstance()

Description

Finds an instance created by a player. Only returns the first instance
that was created by a player.

More information and examples: Players and
Playerhashes

Arguments

	Name
	type
	description

	player
	string
	Hash identifier of the player

Returns

An instance or -1 if no instance was found.

 htme_getPlayerNumber(playerhash)

htme_getPlayerNumber(playerhash)

Description

Extracts the number of the player from the playerhash The number starts
at 1 for the server, 2 is the first connected client, 3 the third and so
on. If 2 disconnects, the next player connecting will occupy place 2
again.

Arguments

	Name
	type
	description

	playe
rhash
	strin
g
	A playerhash
as stored in
the list
that you can
get with
htme_getPla
yers.

Returns

The player number

 htme_getPlayers()

htme_getPlayers()

Description

Get a ds_list of players.

More information and examples: Players and
Playerhashes

Arguments

None

Returns

a ds_list containing all player hashes.

 htme_isLocal()

htme_isLocal()

Description

Returns true if the instance was created
locally, false if it wasn’t or if it wasn’t even
synced with the engine.

Arguments

None

Returns

True if calling instance was created locally and is synced, false
otherwise.

 htme_isLostConnection()

htme_isLostConnection()

Description

Check if the connection is lost. This will also clean the engine and you can go to the main room if the script return true.

if htme_isLostConnection()
{
 room_goto(rm_main);
}

Arguments

None

Returns

True if the connection is lost.

 htme_isServer()

htme_isServer()

Description

Check if this engine is running in server mode.

NOTE: This will always return true when called by non local
instances, this can’t be used to identify if a
remote instance belongs to the server!

Arguments

None

Returns

True if running in server mode, except when called by a remote instance,
in that case it will always return true.

 htme_isStarted()

htme_isStarted()

Description

Check if a server or client was started

Arguments

None

Returns

True if the engine is started.

 htme_serverDisconnect(player)

htme_serverDisconnect(player)

Description

Asks a client to execute htme_clientDisconnect to disconnect. If he
doesn’t within the timeout set in htme_config, he will be kicked by the
server.

Arguments

	Name
	type
	description

	player
	string
	Hash identifier of the player

Returns

Nothing.

 htme_serverShutdown(player)

htme_serverShutdown(player)

Description

Shuts the server down and tells all player about it.

Arguments

None.

Returns

Nothing.

 htme_syncGroupNow()

htme_syncGroupNow()

Description

Force syncs all or specific group names one time in the next step.
If you don’t provide any arguments, all groups will be force synced.
Good if you have a group that syncs every 60 seconds but want to sync it earlier because you changed the value.

Arguments

None or up to 16 group names (string)

Returns

Nothing

 Chat

Chat

	htme_chatGetMessage(chat_queue_entry)
	Description

	Example

	Arguments

	Returns

	htme_chatGetSender(chat_queue_entry)
	Description

	Example

	Arguments

	Returns

	mp_chatGetQueue()
	Description

	Example

	Arguments

	Returns

	mp_chatSend(message,[to])
	Description

	Example

	Arguments

	Returns

	mp_syncAsChatHandler(channel)
	Description

	Example

	Arguments

	Returns

 htme_chatGetMessage(chat_queue_entry)

htme_chatGetMessage(chat_queue_entry)

Description

Get the message of a CHAT Interface message. See
mp_chatGetQueue for details.

Example

Read the tutorial about creating a chat system
for more information.

Arguments

	Name
	type
	description

	chat_queue_entry
	string
	An entry of the queue returned by mp_chatGetQueue.

Returns

Message that was sent

 htme_chatGetSender(chat_queue_entry)

htme_chatGetSender(chat_queue_entry)

Description

Get the sender of a CHAT Interface message. See
mp_chatGetQueue for details.

Example

Read the tutorial about creating a chat system
for more information.

Arguments

	Name
	type
	description

	chat_queue_entry
	string
	An entry of the queue returned by mp_chatGetQueue.

Returns

Playerhash of the player that sent this message

 mp_chatGetQueue()

mp_chatGetQueue()

Description

Object has to be set up with mp_syncAsChatHandler first, otherwise an
error will occur.

Get a ds_queue containing all not processed string that recieved via
this channel. All entries in this queue can be decoded using these
commands: * htme_chatGetSender
- To get the playerhash of the player that sent this message *
htme_chatGetMessage - To get
the chat message.

Example

Read the tutorial about creating a chat system
for more information.

Arguments

None

Returns

A ds_queue, it’s entries can be decoded using the functions above.

 mp_chatSend(message,[to])

mp_chatSend(message,[to])

Description

Object has to be set up with
mp_syncAsChatHandler first,
otherwise an error will occur.

Send message via the CHAT Interface over this chanel. The message has to
be a string. You can also experiment with json to send more complicated
data.

This message will by default be sent to all clients and the server [also
the local game!] and can be retrieved via
mp_chatGetQueue.

Use the additional ‘to’ argument to only send this message to one
player.

Example

Read the tutorial about creating a chat system
for more information.

Arguments

	Name
	type
	description

	messa
ge
	strin
g
	The message
to send

	[to]
	strin
g
	(optional;
Will send to
all by
default)
hash of the
player that
the message
should be
sent to.

Returns

Nothing

 mp_syncAsChatHandler(channel)

mp_syncAsChatHandler(channel)

Description

Add this object as a handler for traffic via the CHAT Interface.

This object can then send and recieve traffic on the specified channel
using mp_chatGetQueue and
mp_chatSend.

This is independent from mp_sync and it’s mp commands. You don’t have
to use mp_sync.

Example

Read the tutorial about creating a chat system
for more information.

Arguments

	Name
	type
	description

	channel
	string
	The name of the channel to assign to this object

Returns

Nothing

 Online Lobby

Online Lobby

	udphp_downloadServerList(...)
	Description

	Arguments

	Returns

 udphp_downloadServerList(...)

udphp_downloadServerList(...)

Description

Detailed information in `Tutorial - Bonus 1 - An ONLINE
lobby <tutorial/13_lobby>`__.

Download the list of servers from the master server.

global.udphp_downloadlist_refreshing will be set true. It will be set
false again if download is finished and global.udphp_downloadlist
will contain a list of online servers then. If download fails,
global.udphp_downloadlist_refreshing will never reset. It will fail,
if the master server has the lobby disabled or is not reachable.

Use the (optional) arguments to sort and filter the list. Default
sorting can be seen below under arguments.

Format of global.udphp_downloadlist:

ds_list:
 [0...] => ds_map:
 [ip] => string
 [data1] => string
 [data2] => string
 [data3] => string
 [data4] => string
 [data5] => string
 [data6] => string
 [data7] => string
 [data8] => string
 [createdTime] => string -> can be converted to real
 unix timestamp, time the server was created.

Arguments

	Name
	type
	description

	[limi
t]
	strin
g/rea
l
	The number
of servers
to return or
EMPTY STRING
if ALL
servers
should be
returned
(optional)

	[sort
by]
	strin
g
	Field to
sort the
result by,
this can be:
date (filter
by time
created;
DEFAULT),
data1,
data2,
data3,
data4,
data5,
data6,
data7, data8
(optional)

	[sort
by_d
ir]
	strin
g
	Sort
ascending
(“ASC”) or
descending
(“DESC”;
DEFAULT)
(optional)

	[filt
er_d
ata1]
	strin
g
	Only list
servers that
match this
excact
string for
their first
data string
(the game
name). Can
be EMPTY
STRING if
you don’t
want to
filter
(optional)

	[filt
er_d
ata2]
	strin
g
	See above;
but for
second data
string
(optional)

	[filt
er_d
ata3]
	strin
g
	See above...
(optional)

	[filt
er_d
ata4]
	strin
g
	See above...
(optional)

	[filt
er_d
ata5]
	strin
g
	See above...
(optional)

	[filt
er_d
ata6]
	strin
g
	See above...
(optional)

	[filt
er_d
ata7]
	strin
g
	See above...
(optional)

	[filt
er_d
ata8]
	strin
g
	See above...
(optional)

Returns

Nothing

 LAN Lobby

LAN Lobby

	tme_startLANsearch(port,[gamefilter])
	Description

	Arguments

	Returns

 tme_startLANsearch(port,[gamefilter])

tme_startLANsearch(port,[gamefilter])

Description

Detailed information in `Tutorial - Bonus 3 - A LAN
lobby <tutorial/15_lanlobby>`__.

Search in the LAN for servers on the port specified. You can now use
htme_getLANServers() to get a list of LAN servers. This list will
be filled with servers over time. Run this comamnd again to empty it and
resend the broadcast (to refresh the list).

Format of the list returned by **htme_getLANServers()**:
ds_list:
 [0...] => ds_map:
 [ip] => string
 [port] => real
 [data1] => string
 [data2] => string
 [data3] => string
 [data4] => string
 [data5] => string
 [data6] => string
 [data7] => string
 [data8] => string

Arguments

	Name
	type
	description

	limit
	real
	The port to
scan on

	[game
filte
r]
	strin
g
	Only list
servers that
match this
excact
string for
their first
data string
(the
gamename).
Can be EMPTY
STRING if
you don’t
want to
filter

Returns

Nothing

 Global Sync

Global Sync

	htme_globalGet(name)
	Description

	Example

	Arguments

	Returns

	htme_globalSet(name,value,datatype)
	Description

	Example

	Arguments

	Returns

	htme_globalSetFast(name,value,datatype)
	Description

	Example

	Arguments

	Returns

 htme_globalGet(name)

htme_globalGet(name)

Description

Returns a variable from the global sync list. See htme_globalSet for
information on what these variables are. Will return undefined if
variables was not stored previously by any client or the server. Make
sure the player is connected or a server is running!

More information: Bonus 2 - Global Sync (Sync a pool of variables
editable by all)

Example

var value = htme_globalGet("name")

if (is_undefined(value) {
 //Nope, that wasn't set yet...
}

Arguments

	Name
	type
	description

	name
	string
	The name of the variable

Returns

The saved variable (real or string) or undefined

 htme_globalSet(name,value,datatype)

htme_globalSet(name,value,datatype)

Description

Stores a real or string value in the global sync list. Use buffer_type
to define the type of the variable. The global sync list is a list of
global variables that can be retrived via htme_globalGet.

They get synced between all clients and servers and be read and written
by any (unlike instance variables which are read-only for all but the
creator).

Make sure the player is connected or a server is running!

NOTE: Using this command will sync this variable immediately via
SMART

More information: Bonus 2 - Global Sync (Sync a pool of variables
editable by all)

Example

var value = 1+1;
htme_globalSet("name",value,buffer_u8);

Arguments

	Name
	type
	description

	name
	string
	The name of the variable

	value
	real/string
	The (new) value of the variable you want to store

	datatype
	real
	See Buffer type

Returns

Nothing

 htme_globalSetFast(name,value,datatype)

htme_globalSetFast(name,value,datatype)

Description

See htme_globalSet.

The only difference is that this script uses the FAST sync
type. This means in rare cases when using this
function the global Sync cache may be desynced, therefor only use this
function in very specific cases.

More information: Bonus 2 - Global Sync (Sync a pool of variables
editable by all)

Example

var value = 1+1;
htme_globalSetFast("name",value,buffer_u8);

Arguments

	Name
	type
	description

	name
	string
	The name of the variable

	value
	real/string
	The (new) value of the variable you want to store

	datatype
	real
	See Buffer type

Returns

Nothing

 Events

Events

	htme_error_message_handler(message)
	Description

	Arguments

	Returns

	htme_serverEventHandlerConnecting(script)
	Description

	Example

	Arguments

	Returns

	htme_serverEventHandlerDisconnecting(script)
	Description

	Example

	Arguments

	Returns

 htme_error_message_handler(message)

htme_error_message_handler(message)

Description

You don’t call this script. You edit this script to show all the error messages from the
engine. You can use the existing or create your own. The script will receive the error message as
an argument.

Arguments

	Name
	type
	description

	message
	string
	The error
message

Returns

Nothing

 htme_serverEventHandlerConnecting(script)

htme_serverEventHandlerConnecting(script)

Description

Call a script if a new player connected. This script has to meet the
following specifications:

Callback Arguments:

	Name
	type
	description

	playe
r_ma
p
	ds_m
ap
	a ds_map
with the
keys ip and
port, which
contain ip
and port of
the player

Callback Returns:

TRUE if the connection is accepted. The engine will then register the
player

FALSE if the connection should be refused, the server will abort
connection

Example

See BONUS 4 - Event Handlers for
Connecting/Disconnecting.

Arguments

	Name
	type
	description

	scrip
t
	resso
urce
id of
a
scrip
t
	The script
to call when
a player
connected.

Returns

Nothing

 htme_serverEventHandlerDisconnecting(script)

htme_serverEventHandlerDisconnecting(script)

Description

Call a script if a player disconnected. This script has to meet the
following specifications:

Callback Arguments:

	Name
	type
	description

	player_map
	ds_map
	a ds_map with the keys ip and port and hash

Callback Returns:

Nothing

Example

See BONUS 4 - Event Handlers for
Connecting/Disconnecting.

Arguments

	Name
	type
	description

	scrip
t
	resso
urce
id of
a
scrip
t
	The script
to call when
a player
disconnected
.

Returns

Nothing

 Config

Config

	htme_config()
	Description

 htme_config()

htme_config()

Description

Contains the configuration and setups variables.

For more informatio see:

	Basic configuration

	PLUS - Setup GMnet PUNCH

 Extending the Engine / Advanced Use

Extending the Engine / Advanced Use

	Interpolation

 Interpolation

Interpolation

You will notice that sending keystrokes are not always optimal.
Your player object will do some jittering when move. And you teleport from place to place sometimes.
Here is a video to show why you need interpolation:

 Troubleshooting

Troubleshooting

	Check if client is connected
	Use htme_getPlayers()

	Why do i control two instances
	Use htme_isLocal()

	Use Dual window extension

	Use Windows exe and game maker player export

	Error on connect
	Port is a real

	Fire input not received on client
	Send only when needed

	Player numbers
	Get current player

	Get remote player number from object

	How to quit/disconnect
	Use htme_disconnectNow()

 Check if client is connected

Check if client is connected

Sometimes you want to check if another player is conencted.

Use htme_getPlayers()

htme_getPlayers() will return a ds list with all the connected players.
You can check if above 1 and then you know a client is connected.

var playerlist = htme_getPlayers();
var total_players=ds_list_size(playerlist);
if total_players>1 {
 show_debug_message("Another player is connected!");
}

 Why do i control two instances

Why do i control two instances

When you start two instances of your game you may experience that you control P1 and P2.
This may be because of missing htme_isLocal or windows may send the controls to both games at the same time.
Here are some thins you can try.

Use htme_isLocal()

You must make sure that all your keyboard and mouse inputs are inside a htme_isLocal() statement like this:

if (htme_isLocal()) {
 self.pressed_jump = keyboard_check(vk_space);
 self.pressed_left = keyboard_check(vk_left);
 self.pressed_right = keyboard_check(vk_right);
}

This will make sure that only the local player run the control code.

Use Dual window extension

With this extension game maker will start 2 games when you test them in game maker.
When you click one window the other may not receive the controls.
Import this extension:
https://drive.google.com/file/d/0BxE4k4xEiNO2dEY5bUZ0dmo1b1E/view?usp=sharing
And add this object in the first room:
https://drive.google.com/file/d/0BxE4k4xEiNO2NW81Q1FnOTdsUUU/view?usp=sharing

Use Windows exe and game maker player export

You can also try export the game to windows exe and then run the game in game maker with game maker player export selected.
This may stop windows to send the input to both games at the same time.

 Error on connect

Error on connect

Sometimes you may experience errors when you try connect. Here are some error messages and the solutions.

Port is a real

ERROR in
action number 1
of Step Event0
for object obj_htme:

Illegal argument type
at gml_Script_htme_clientConnect (line 29) - network_send_udp(self.socketOrServer, self.server_ip, self.server_port, self.buffer, buffer_tell(self.buffer));
##
--
stack frame is
gml_Script_htme_clientConnect (line 29)
called from - gml_Script_htme_step (line 59) - htme_clientConnect();
called from - gml_Object_obj_htme_StepNormalEvent_1 (line 2) - htme_step();

Make sure you provide a real and not a string as port argument in htme_clientStart.

htme_clientStart(ip,real(port))

 Fire input not received on client

Fire input not received on client

Sometimes you may experience that some keytrokes is missing on the client side. Ex say you use this code:

Create event:

self.firenow=false;
mp_add("firebutton","firenow",buffer_bool,1);

Step Begin event:

if (htme_isLocal())
{
 self.firenow= keyboard_check_pressed(vk_space);
}

mp_map_syncIn("firenow",self.firenow);

Step End event:

self.firenow=mp_map_syncOut("firenow",self.firenow);

This code send a network message to the other players every step.
But sometime the client wont receive the message.
This is because of network lag.

You send 30 network messages per sec. These messages is sent to the client.
But every message take about 10-600 milliseconds to reach the other player.
This means that some of the messages may be bundled and be received at the same time.
Say you press fire 2 times within 1 sec. Under 1 sec the messages look like this.
Every 0 is a no fire and 1 is a fire. Ever space is a step in gm. You send a perfect array of messages.
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
But the player who receives the messages may receive them like this
000 0000001
00 0000 000100
00000000
The other player received several messages in the same step. 000 is ok.
0000001 is ok because the 1 was the last message received in this step and self.firenow will be true when the step event run in the player.
00 and 0000 ok. But here it comes. 000100 here the other player receive 6 messages in the same step.
Even if 1 fire was in there the last message received set self.firenow to false. So no fire this step.

Send only when needed

You can fix this by increasing the mp_add("firebutton","firenow",buffer_bool,room_speed*100);
This will stop to send messages every step. But when you fire you need to send it.
You can do this by calling htme_syncGroupNow("firebutton").

if htme_isLocal()
{

If keyboard_check_pressed(ord(“f”))
{

firenow=true
mp_map_syncIn(“firenow”,self.firenow);
htme_syncGroupNow(“firebutton”);

}
Else if keyboard_check_released(ord(“f”))
{

firenow=false
mp_map_syncIn(“firenow”,self.firenow);
htme_syncGroupNow(“firebutton”);

}

}

 Player numbers

Player numbers

It can be tricky to get the player number. But here is how to do it.

Get current player

Use this code to get the local player number. If you are the server your number is 1.
If another player connects he is number 2. If you have 3 players and p2 disconnect nr 2 is free.
When someone joins he will get the free nr 2.

htme_getPlayerNumber(global.htme_object.playerhash);

Get remote player number from object

You can also get the player number from any synced object. Use this code to check what player a synced object belongs to.

htme_getPlayerNumber(obj_synced_player.htme_mp_player);

 How to quit/disconnect

How to quit/disconnect

When you start a server or connect a client to a server and want to quit while you are in the game.

Use htme_disconnectNow()

After you call htme_disconnectNow() the gmnet engine will disconnect and you can go to the room you want.
Make sure you remove all other network related objects after.

if htme_disconnectNow() {
 // If disconnect is ok then do some cleaning
 // Remove persistent but not synced objects
 with htme_obj_chat instance_destroy();
 with htme_obj_playerlist instance_destroy();
 // Go back to menu room
 room_goto(htme_rom_menu);
}

 How to update

How to update

When updating, check the changelog and this page to see which files have
changed. When you made changes to these files, make a backup and update
the asset.

After you are done updating, check what has changed (you might find
detailed information in the changelog) and merge the new version with
your changes.

Recent updates

1.2.2 - CHAT Interface, Event Handlers, RPCs, MIT License

	LICENSE CHANGED TO MIT
Due to confusion about the GPLv3 license, I decided to change the
license to the MIT license. This is way easier to understand for
everybody. BY UPDATING YOU AGREE TO THIS NEW LICENSE. THIS LICENSE
REPLACES THE OLD ONE.

	Support for custom Event Handler for Connection/Disconnection on
Server
Also adds an easy way to reject players when they conect

	Fixed a bug that prevented the game to be run with the YYC (thanks to
Imtnt @gmc)

	Server Shutdown Function added and automatic shutdown/disconnect if
the htme object is destroyed / game is ended

	PLUS/UDPHP : UDPHP 1.2.1 - Fixed an issue where servers and client
could not connect to each other when the master server was not
reachable.

	Added CHAT Interface:
This is a new set of functions that allow you to send and recieve
string messages in a more clasic way. The manual was updated so the
Chat Tutorial now uses this new way of syncing (an RPC tutorial was
also added to the manual; see below).

	Updated debug overlay to include debug information about the CHAT
Interface

	Fixed a bug, where in rare cases clients could start syncing before
they got their player hash which lead to invalid instances being
synced and mayor desync

	MANUAL (http://htme.parakoopa.de/manual) :

	Added manual pages for the event handler scripts

	Added Tutorial Chapter Bonus 4 - Event Handlers for
Connecting/Disconnecting

	Added manual page for htme_shutdown

	Added manual page for htme_globalSyncFAST

	Added manual page for the CHAT Interface and all it’s functions

	Rewrote Tutorial 11 - Chat (it is now using the CHAT Interface)

	Added Tutorial Chapter Bonus 5 - RPC

	Updated debug overlay manual

	Master Server is now on Version 1.2.3, you might want to update, some
critical bugfixes were made.

	**We now have a forum: http://htme.parakoopa.de/forum - Check it out
- This is now the main place for support! **

1.2.1 - Introducing a better online lobby and a LAN lobby for all!

This update improves the ONLINE lobby by adding fltering and sorting
mechanisms. Check out the updated tutorial! Also
we added a seperate lobby for LAN Servers,
the master server was HUGELY updated and we are happy to introduce a
testing tool for master servers

	Added a LAN lobby.

	UDPHP/PLUS: Added a new lobby system that supports filtering

	UDPHP/PLUS: Added support for new registration and sending version
number

	UDPHP/PLUS: Changed it so the server only reconnects to the master
server if it lost connection

	You need to update the master/mediation server if you are a GMnet
ENGINE!!

Master server changelog

Master server Version 1.2.0

	Added the possibility to name the server

	Added –version parameter

	Added –testing paramter to be tested via HTMT.

	Added multiple testing commands

	Added a filter for a minimum required udphp version

	Changed registration so it requires the udphp version of the server
that wants to register

	Fixed bugs in server destruction

	Added a createdTime field to the servers

	Added filter and sorting methods to the lobby

CHANGED FILES IN 1.2.1:

scripts/htme_init.gml
objects/obj_udphphtme_lobby.object.gmx
scripts/udphp_config.gml
scripts/udphp_downloadServerList.gml
scripts/udphp_serverCommitData.gml
scripts/udphp_Punch.gml
scripts/htme_getDataServer.gml
scripts/htme_getLANServers.gml
rooms/htme_lanlobby.room.gmx
scripts/htme_networking_searchForBroadcasts.gml
objects/htme_obj_lanlobbydemo.object.gmx
objects/htme_obj_menu.object.gmx
scripts/htme_serverBroadcast.gml
scripts/htme_serverStart.gml
scripts/htme_startLANsearch.gml
scripts/htme_stopLANsearch.gml
scripts/htme_step.gml

1.2.0 - Debug overlay and graceful discon

I recommend to reinstall GMnet ENGINE, meaning removing the old asset
and adding the new one. Make sure to backup your config.

	Added htme_serverDisconnect and htme_clientDisconnect to gracefully
kick players or disconnect from the server.

	Added a debug overlay. All information about that
here.

	Changed visuals of demo project

	UDPHP (PLUS only): Fixed bug that resulted in not closing old TCP
connections on the servr when reconnecting.

	Added globalSetFAST. Same as globalSet but with the fast sync type.

CHANGED FILES IN 1.2.0:

objects/htme_obj_playerlist.object.gmx
objects/obj_htme.object.gmx
rooms/htme_rom_demo.room.gmx
rooms/htme_rom_demo2.room.gmx
scripts/htme_clientDisconnect.gml
scripts/htme_clientNetworking.gml
scripts/htme_clientShutdown.gml
scripts/htme_debugOverlayEnabled.gml
scripts/htme_debugoverlay.gml
scripts/htme_doDrawInstanceTable.gml
scripts/htme_doGlobalSync.gml
scripts/htme_doInstAll.gml
scripts/htme_doInstCached.gml
scripts/htme_doInstInvisible.gml
scripts/htme_doInstVisible.gml
scripts/htme_doMain.gml
scripts/htme_doMain_new.gml
scripts/htme_doOff.gml
scripts/htme_doPlayers.gml
scripts/htme_doSignedPackets.gml
scripts/htme_doStateInstAll.gml
scripts/htme_doStateInstCached.gml
scripts/htme_doStateInstInvisible.gml
scripts/htme_doStateInstVisible.gml
scripts/htme_doStateMain.gml
scripts/htme_doStateOff.gml
scripts/htme_do_createMicro.gml
scripts/htme_dotbd.gml
scripts/htme_findPlayerInstance.gml
scripts/htme_globalSetFast.gml
scripts/htme_globalSet_new.gml
scripts/htme_init.gml
scripts/htme_sendGSFast.gml
scripts/htme_sendGS_new.gml
scripts/htme_serverDisconnect.gml
scripts/htme_serverKickClient.gml
scripts/htme_serverNetworking.gml
scripts/htme_serverProcessKicks.gml
scripts/htme_serverStart.gml
scripts/htme_step.gml
scripts/mp_add.gml
scripts/udphp_serverPunch.gml
sprites/htme_spr_door.sprite.gmx
sprites/htme_spr_player.sprite.gmx
sprites/images/htme_spr_door_0.png
sprites/images/htme_spr_player_0.png
sprites/images/htme_spr_wall_0.png

1.1.0 - Introducing: Global Sync

	Added Global Sync to sync global variables that are read- and
writeable at any time by all clients and the server.

CHANGED FILES IN 1.1.0:

htme_clientNetworking.gml
htme_clientStart.gml
htme_init.gml
htme_serverEventPlayerConnected.gml
htme_serverNetworking.gml
htme_serverStart.gml
htme_recieveGS.gml (added)
htme_sendGS.gml (added)
htme_globalGet.gml (added)
htme_globalSet.gml (added)

1.0.0 - The lobby update

Please see this page for more information

0.6.0 - The performance update

The great performance update! - ADDED A NEW LICENSE. BY UPDATING YOU
AGREE TO THIS NEW LICENSE. – The license is still GPLv3, but it comes
with an additional permission to create games in Game Maker without
having you to provide the source code of your game when using the
Mutliplayer Engine - Made isLocal faster - Improved behaviour and
performance of signed packets. Reliable data will no longer by sent if
new data is available - Replaced most of the maps with lists, resulting
in a huge performance boost! - Fixed crashes and desyncs on certain
events - Fixed a mayor memory leak and improved memory managment - COMES
WITH udpph 1.1.2. - No mayor changes to the local manual! - Online
manual was updated with changelog.

CHANGED FILES IN 0.6.0:

htme_cleanUpInstance.gml
htme_clientBroadcastUnsync.gml
htme_clientStart.gml
htme_createSignedPacket.gml
htme_createSingleSignedPacket.gml
htme_forceSyncLocalInstances.gml
htme_init.gml
htme_isLocal.gml
htme_recieveSignedPackets.gml
htme_recieveVarGroup.gml
htme_removeSignedPacket.gml
htme_removeSignedPacketsByCatFilter.gml
htme_roomstart.gml
htme_sendSignedPacket.gml
htme_sendSignedPackets.gml
htme_serverBroadcastUnsync.gml
htme_serverCreateSPForAllCheckRoom.gml
htme_serverEventPlayerConnected.gml
htme_serverEventPlayerDisconnected.gml
htme_serverKickClient.gml
htme_serverNetworking.gml
htme_serverRecreateInstancesLocal.gml
htme_serverRemoveBackup.gml
htme_serverSendAllInstances.gml
htme_serverStart.gml
htme_serverSyncPlayersUDPHP.gml
htme_syncInstances.gml
htme_syncSingleVarGroup.gml
mp_add.gml
mp_unsync.gml
udphp_stopServer.gml

udphp CHANGELOG:

udphp 1.1.2: * Fixed stopServer not working anymore

udphp 1.1.1: * Fixed some bugs that were created with the changes in
1.1.0. ...

0.5.0

Initial release

 Getting Started

Getting Started

Always wanted to make a multiplayer game? But you don’t want to host
your own dedicated servers or want the players to open ports in their
firewall? Do you just want them to simply press a button to play wih
their friends?

GMnet PUNCH allows you to do the impossible! With simply calling a
few scripts in your game you can get your game to the next level of
multiplayer experience.

	What is UDP hole punching?

	Requirements

	UPnP

Features

	Multiplayer without port forwarding - Your players can enjoy
gaming with their friends without having to deal with anoying
firewalls

	Builtin server and client structure that simply connects with the
one you already have - Just follow the instructions and add it to
your game.

	Easily extendable to support Peer-to-Peer gaming!

	Open source (GPLv3) - You have the source code, you can modify it
in any way you want and also use it as much as you want

	Simple to use with tutorials and sample project - You download
the sample project with all required GMnet PUNCH scripts. You can
just press play and try it out.

	Well documented - Not only do you get a sample project! GMnet
PUNCH is well documented and easy to read. And since it’s open
source and you bought it, you can easily change it to your needs.

	Easy to use - For both you and the players!

	Using a master/mediation/rendevouz server… - You don’t need to
host a whole game server, you only need a small lightweight server
that connects the clients to your server. More information can be
found on the page Requirements.

	Fallback mode when UDP hole punching doesn’t work - In local
networks GMnet PUNCH will automatically try to connect directly to
the server.

	Infinite clients - Supports infinite clients in a single game.

 What is UDP hole punching?

What is UDP hole punching?

UDP hole punching is a technique that allows UDP packets to be send,
that normally a NAT would block. Normally if you want to host a game,
you have to open the ports, because otherwise your NAT would block the
UDP (or TCP) packets that are required for network communication. UDP
hole punching works because in the process the client does not simply
“connect” to the server. The server also sends packets back, which means
both try to connect at the same time to each other. Then both NATs will
accept the connection.

The problem is that at least the server doesn’t know when a client
connects to it. That’s why we need a (globally reachable= master server.
The server registers at the master server and opens a TCP connection so
the master server can send the client informations*. When a client
tries to connect, it also registers it’s UDP port at the master server
and tells it to which server it wants to connect. If the server is
found, the ports will be send backd via TCP. The client get’s the server
port/ip and the server the client port/ip. Then both send the packets
and the hole is punched. Both players are connected to each other.

(* TCP allows the master server to send packets back to the server.
That’s because TCP works with connections and if the server opens a
connection to the master server, both can send packets to each other,
even if the server is behind a NAT.)

(Source: http://en.wikipedia.org/wiki/UDP_hole_punching)

 Requirements

Requirements

Besides a valid Game Maker: Studio license you will also need to
host a master server somewhere. “Somewhere” means it has to be reachable
from the internet! [Ports must be opened] Also please note that this
only works with UDP game servers! - Setting up UDP game servers in
Game Maker is very differnt from TCP game servers since UDP is
connectionless. If you need help, contact me!

Wait, I need to host a “master server”?! - Where do I get that?

The server GMnet GATE.PUNCH that is needed to connect clients and
servers is free software and the source code can be found on it’s
product page [http://gmnet.parakoopa.de/gatepunch].

It is written in java and you can either download the binarys or the
well-documented source code. Adjust the mediation server to fit your
needs or write your own (you can find the communication “protocol”
below) It comes with everything that is needed for TCP and UDP
communication with Game Maker: Studio and can also be used to create a
dedicated multiplayer server or something elese.

You need to host this server yourself. If you can’t right now, contact
me, I can host a server for you for testing purposes. For the demo you
can also connect to the default IP and port (please note that this demo
server might be down).

If you need more help setting up the server, check out the tutorial
page of GMnet ENGINE on this
topic [http://gmnet.parakoopa.de/manual/engine/tutorial/3_udphp2].

 UPnP

UPnP

UPnP stands for Universal Plug and Play.

GMnet PUNCH use UDP hole punching to make the NAT/router allow online connections.

UPnP automates the port forwarding on the users router or NAT. It sends a command to the router to forward a port.

But not all NATs allow UDP punch. The user must then manually port forward the server port (ex 6510)
or use other methods such as UDP Hole-Punching (as done by GMnet PUNCH) that can also allow online play without UPnP or port forwarding.

By enabling UPnP you allow users who don’t forward their port and that are in
networks that don’t support UDP Hole-Punching to play anyway.

When your users start the server, UPnP will try to port forward the server port for them.
You can enable UPnP in udphp_config.

Note

UPnP won’t work 100% for everybody (even if UPnP is supported) when used with the GMNet PUNCH master server until version 1.4.0!

But there is no harm in turning it on anyway.

 Tutorial

Tutorial

	1. Implementing GMnet PUNCH in your game

	2. obj_control

	3. Server

	4. Client

	5. Lobby

 1. Implementing GMnet PUNCH in your game

1. Implementing GMnet PUNCH in your game

To implement GMnet PUNCH in your game copy all scripts and the
behaviour of all the objects to your game and adjust them to your needs.
When copying the behaviour, you can simply use your existing
server/client objects and add the codes at the top of your events.

 2. obj_control

2. obj_control

Let’s actually talk about this “behaviour”: I will not go over the debug
objects in the sample project, I will only guide you through the
neccassry objects/code. Let’s start with object obj_control. The
only important thing in obj_control is the create event. In the
create event you can find, that udphp_config is called. This is the
first you have to call when you want to use GMnet PUNCH.

How to use udphp_config (arguments):

	master_ip(stringl) -> The IP of the master server that both
server and client will use to connect to each other. Confused? See
the section Wait, I need to host a “master server”?! - Where do I
get that?.

	master_port(real) -> The UDP and TCP port the master server
listens on.

	reconnect intverval(real) -> After this amount of steps the
server will reconnect to the master server. This has to be done, to
ensure the server is always connected to the master server. Future
versions will auto-reconnect on loss of connection, but we are still
testing that out.

	connection timeout(real) -> After this amount of time the server
and client will give up to connect t eachother. The client will
display a connection failed message. This timeout will also be used
if you set the client to directly connect to the server.

	debug(boolean [0/false or 1/true]) -> Show more debug messages.
Not recommended for production use.

	silent(boolean) -> This will turn ALL debug messages off.
Recommended for production use.

Copy the call of this script to your game startup or somewhere else
where it get’s called before the other GMnet PUNCH scripts. Make sure no
global variables starting with udphp_ are used. These are reserved for
GMnet PUNCH.

 3. Server

3. Server

Okay so we are done in obj_control. Let’s go to obj_server and
obj_client. Both have the same structure. GMnet PUNCH uses the
create event, the step event and the networking event of
both. The following scripts can jsut be inserted as [the first] entries
in these events. The GMnet PUNCH scripts will only run when needed and
they won’t interupt your networking. If they do, please contact the
support!

3.1. Server create event

obj_server’s create event get’s called on server creation
(obviously). You need to create a player list (ds_list) there. This
list will be used by GMnet PUNCH to store all players in. How to use
them in your game will be explained later, but this is your only way to
tell which player communicates with the server! You will also need a
buffer that will be used for communication by the server. It should
either be large or a growing buffer. The last thing you’ll need is a
UDP server created by
network_create_server(network_socket_udp,{port},{maxplayers}. All
these will be fed into the udphp_createServer script.

How to use udphp_createServer (arguments):

	server - A UDP server

	buffer - A buffer

	player-list - A ds_list that will store all players (more
information below)

udphp_createServer will return either true or false. If the
returned value is false, the server creation failed.

player_list = ds_list_create();
buffer = buffer_create(256, buffer_grow, 1);
server = network_create_server(network_socket_udp,1234,32);
ret = udphp_createServer(server,buffer,player_list);
if (!ret) {
 //Server could not be created. Destroy instace. GMnet PUNCH will also show a message if not silent.
 instance_destroy();
}

3.2. Server step event

In obj_server’s step event the actual magic happens. Just run
udphp_serverPunch with no arguments.

3.3. Server networking event

And in obj_server’s networking event we share the magic: Simply run
udphp_serverNetworking with no arguemnts.

3.4. Server: Client identification

To identify clients in the networking event, you take the ip and
the portof async_load and check if they are in the player
list you created earlier. The player list stores keys in the format
“ip:port”.

3.4.1. To see if a player is in the player list:

var in_ip = ds_map_find_value(async_load, "ip");
var in_port = ds_map_find_value(async_load, "port");
var exists = ds_list_find_index(player_list, in_ip+":"+string(in_port));
//exists will give you the position of the player in the list or -1 if he's not in there

3.4.2. To get ip and port of a player entry:

var entry = /* Entry from the player list */
var ip = udphp_playerListIP(entry);
var port = udphp_playerListPort(entry);

To send a message to all players iterate over the player list and send a
packet to all players (see hello world demo in step event).

 4. Client

4. Client

4.1. Client create event

To create the udphp client with udphp_createClient you need a
UDP socket (not server!), a buffer, as well as the server
ip. The rest is explained in the argument listing: *How to use
udphp_createClient (arguments)*:

	UDP client socket - A UDP socket

	Server IP(string) - The IP of the server to connect to (not the
master server ip!)

	buffer - A buffer

	directconnect(bool) - If you set this to true, GMnet PUNCH will
be bypassed. The client willdirectly connect to the server without
hole punching. directconnect is automatically set to true when the
master server is down or the server is not registered at the master
server

	server_port(real) - This is optional. Set to 0 when unkown. This
will be used (and is then required for successful connection) when
the client connects directly and ONLY then. See above to know when it
connects directly.

IMPORTANT: The function will return the client id you have to
store. This id is used to identify this client. Using this you can run
multiple clients in one game (as used in the demo). It will return -1 if
the client could not be created.

buffer = buffer_create(256, buffer_grow, 1);
client = network_create_socket(network_socket_udp);

client_id = udphp_createClient(client,server_ip,buffer,false,1234);
if (client_id < 0) {
 //Client could not be created. Destroy instace. GMnet PUNCH will also show a message if not silent.
 instance_destroy();
}
`

4.2. Client step event

In the step event simply run udphp_clientPunch with the
stored client id as argument. This function will return false if the
client’s connection failed. This is the only way to determine if a
connection process failed and it will return true in all other cases.

if (!udphp_clientPunch(client_id)) {
 //When this returns false, the connection failed or the client was destroyed.
 show_message("Connection failed!");
 instance_destroy();
}
`

4.3. Client networking event

In the networking event simply call udphp_clientNetworking with the
client id as an argument.

4.4. Client: Get IP anf Port of server / check if connected

To communicate with the server after you are connected you of course
need IP and port of the server, you also need to know if you are
already connected. To do that use these functions:

var connected = udphp_clientIsConnected(client_id); //true or false
if (connected) {
 //The next functions will return invalid information if you use them without making sure you are connected:
 var ip = udphp_clientGetServerIP(client_id); //String
 var port = udphp_clientGetServerPort(client_id); //real
}

Please see the hello world demo scripts in obj_client for an example.

4.5. GMnet PUNCH is now set up!

In the next page we will show the last feature: The online lobby!

 5. Lobby

5. Lobby

GMnet PUNCH features a lobby system. Let me guide you through it.

5.1. First things first

Server, client and obj_control are now persistent, so they exist in the
lobby room as well. There is also a new object obj_lobbyclient, which
is explained later.

5.2. Testing the lobby

When you start a client in the demo project and click yes when asked
you will be brought to the demo lobby room. This is a very simple demo
room that can only show four servers. Once we are done, you’ll be able
to create an even better lobby.

To test it, start a server and see if it appears in the lobby. If you
use the demo master server, please note that there might be “GMnet
ENGINE Demo Servers” in the server list. You can not join them, they
were created using the GMnet ENGINE demo project. Both use the same
lobby and the same demo master server.

5.3. Data strings

There are 8 strings that can be used to identify your game in the lobby.

Open the create event of obj_server and you’ll see this
addition to the server creation code:

udphp_serverSetData(1,"udphp_demo113"); //1 is reserved for game name and version! Change it when making your own game!
udphp_serverSetData(2,"GMnet PUNCH demo Server"); //2 is used for game name in our demo lobby
udphp_serverSetData(3,"This is a GMnet PUNCH demo server!"); //3 is used for game description in our demo lobby

These 3 strings are used by the demo project for (1) an identifier for
the demo project, (2) the name of the server, (3) a description of the
server. You can use all 8 for whatever you want, but (1) as a game
identifier is my recommendation.

We set the data strings using udphp_serverSetData(n,string) right
after the server was created. They are stored in the variables
global.udphp_server_data1-8.

If you want to update any data string later, after the server connected
to the master server, you need to use udphp_serverCommitData(). This
syncs all data strings to the master server. You MUST NOT use it here,
because the server hasn’t connected to the master server yet!

5.4. Building the lobby

The room of the lobby is the room udphhtme_lobby. This room only
contains the object obj_udphphtme_lobby. This object controls the
lobby. Let’s dive into it!

5.4.1. The create event

//IF YOU USE GMnet PUNCH - it will only let you connect to GMnet PUNCH servers:
if (!script_exists(asset_get_index("htme_init"))) {
 self.game = "udphp_demo120"
}
//IF YOU USE GMnet ENGINE - it will only let you conect to GMnet ENGINE servers
else {
 self.game = "htme_demo121"
}
//IF YOU USE YOUR OWN SERVER - Change self.game!

///Recieve lobby data from the master server
udphp_downloadServerList(4,"date","DESC",self.game);

First the variable game gets set. We use this to prevent GMnet
ENGINE players from joining GMnet PUNCH servers and vice-versa. As said
before, this object is used in GMnet ENGINE demo project and GMnet PUNCH
standalone demo project, this is why it has seperate code for both.

The important part here is udphp_downloadServerList. This will tell
GMnet PUNCH to download a list of servers from the master server. The
paramters allow for filtering and sorting the result, we use this to
only get results that match our game name we store in datastring 1 in
this example. More information about what you can filter, can be found
on the usage page of udphp_downloadServerList in the GMnet ENGINE
manual [http://gmnet.parakoopa.de/manual/engine/functions/udphp_downloadServerList.html].

You use your own filtering variables later when creating your lobby.

5.4.2. The networking event

///Waits for master server response
udphp_downloadNetworking();

This code checks if the master server sent the server list and updates
it.

5.4.3. The draw event

The draw event is split up into different sub-scripts:

5.4.3.1. ‘Background’, ‘Title and Controls’, ‘Online servers’

Draws some background colors and some text, not important

5.4.3.2. ‘Servers (Loop)’

This draws the actual server list.

Let’s analyze it:

///Servers (Loop)
var l = global.udphp_downloadlist;
for (var i = 0; i<4;i++) {
 draw_text(10,85+80*i,"=("+string(i+1)+")=");

First, the list global.udphp_downloadlist is stored in the local
variable l (because it’s shorter). This ds_list contains all the
servers we got from the master server.

Then it begins a loop that loops through the first 4 servers in the list
we got by the master server, everything is in this loop and then it
draws a nice little number for each server.

if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>i) {

Now, this is the interesting part.

First we check if the downloadlist was already created (it get’s created
once the list has been downloaded). After that we check if it has at
least as many entrys as the server we want to list. For this example we
assume i is 1. That means it checks if there is atleast one server
in the list. If yes, we have an entry we can now draw.

//Get stuff from the downloadlist
var entry = l[| i];
var ip = entry[? "ip"];
var game = entry[? "data1"];
var servername = entry[? "data2"];
var description = entry[? "data3"];

Now the entry (a ds_map) for our server is extracted from the list and
we get the gamename, which is stored in data1, the ip, which is stored
in the key “ip”, the name of the server, which we stored in data2, and
so on.

 draw_text(70,85+80*i,servername+" | "+ip);
 draw_text(70,115+80*i,description);
 }
 }
 draw_line(0,160+80*i,room_width,160+80*i);
}

Now we just draw everything.

5.4.3.3. ‘Footer’

Again, just some text, not important.

5.4.4. The press 1-4 key events

Pressing 1-4 on the keyboard will connect to that game. Let’s see how!

///LOAD GAME SERVER ON SLOT 1
var l = global.udphp_downloadlist;
if (ds_exists(l,ds_type_list)) {
 if (ds_list_size(l)>0) {
 var entry = l[| 0];
 var ip = entry[? "ip"];
 var game = entry[? "data1"];

We again open the downloadlist and check if server 1 is in it, if yes we
continue.

if (game != self.game) {
 //Not compatible game, exit
 show_message("Game server or version is incompatible!");
 exit;
}

Remember the filtering variable we created in the create-event? We use
it here to check if the server is a GMnet PUNCH demo game. If not we
cancel. Please note, that this is propably not needed here, since we
filtered out all, but our game in the create event, when we ran
udphp_downloadServerList.

 //====UDPHP DEMO ONLY
 if (!script_exists(asset_get_index("htme_init"))) {
 //Create new client - See obj_client + manual for more information
 global.tmp_lobby_ip = ip;
 instance_create(0,0,asset_get_index("obj_lobbyclient"));
 //Return to main room
 room_goto(asset_get_index("udphp_room"));
 }
 //====GMnet ENGINE DEMO ONLY
 else {
 //This code is irrelevant for UDPHP and has been removed
 }
 } else {
 //Do nothing - There is no server on this slot
 }
} else {
 //Do nothing - There is no server on this slot
}

This is the rest of the script. We once again check if we are running
the GMnet ENGINE demo project and then we begin connection.

We create a new instance of obj_lobbyclient, a object that is child of
the object obj_client.This means it has the same events. We only
changed the create event to get the ip from global.tmp_lobby_ip
rather than asking for it. It will create a new client same way
obj_client does and control it.

Done!

And this is how you create a lobby! Now go ahead and do it! :)

5.5. How can my clients get the gamename and data strings after they connected?

Please see script udphp_clientReadData for how this works.

 Function reference

Function reference

These are very brief and incomplete information. Detailed information
can be found in the script files

The following scripts are scripts YOU as the game developer use:

Setup:

	udphp_config
One-time setup script
Usage:
udphp_config(master_ip,master_port,reconnect_intv,timeouts,debug,silent,delta time,upnp)

Server:

	udphp_createServer
To be used in the Create event of the server
Usage: udphp_createServer(udp_server,buffer,player_list,upnp port)

	udphp_serverPunch
To be used in the step event of the server
Usage: udphp_serverPunch()

	udphp_serverNetworking
To be used in the networking event of the server
Usage: udphp_serverNetworking()

	udphp_stopServer
Usage: udphp_stopServer()
Delete the instance afterwards

Client:

	udphp_createClient
To be used in the Create event of the client
Note: Returns client id
Usage:
udphp_createClient(udp_socket,server_ip,buffer,directconnect,directconnect_port)

	udphp_clientPunch
To be used in the step event of the client
Usage: udphp_clientPunch(id)

	udphp_clientNetworking
To be used in the networking event of the client
Usage: udphp_clientNetworking(id)

	udphp_stopClient
Usage: udphp_stopClient(client_id)
Instance should be deleted with the false return value of clientPunch

Tools:

	udphp_clientGetServerIP
[for client] This will return the server ip of this client and should
only be used if the client is connected.
Usage: udphp_clientGetServerIP(client_id)

	udphp_clientGetServePort
[for client] This will return the server port of this client and
should only be used if the client is connected.
Usage: udphp_clientGetServerPort(client_id)

	udphp_playerListIP
[for server] Get an ip out of a player list entry (see serverCreate
for details)
Usage: udphp_playerListIP(player)

	udphp_playerListPort
[for server] Get an port out of a player list entry (see serverCreate
for details)
Usage: udphp_playerListPort(player)

	udphp_clientIsConnected
[for client] With this you can check if your client has conncted to
the server.
Usage: udphp_clientIsConnected(client_id)

Lobby:

	udphp_downloadServerList
[no server or client has to be running]
Download a list of servers from the lobby. More
information.
Usage: See GMnet ENGINE manual
page [http://gmnet.parakoopa.de/manual/engine/functions/lobby/udphp_downloadServerList]

 GMnet PUNCH/GATE.PUNCH “protocol” (for building your own server)

GMnet PUNCH/GATE.PUNCH “protocol” (for building your own server)

This is a linear breakdown of what packets are sent:

SERVER:

-> Sends UDP packet to master server containing the string “reg” with
the line feed character (unicode 10) at the end

-> (Re-)connects via TCP to master server

-> Sends TCP packet to master server containing the string “reg” with
the line feed character (unicode 10) at the end

-> Repeats every X minutes [alternative smethod is to reconnect when
TCP socket is closed]

MASTER SERVER:

<- When recieving the UDP packet with “reg” the UDP port for that
server get’s saved

<- When recieving the TCP packet with “reg” this connection socket is
saved so the master server can use it later to communicate with the
server

CLIENT:

-> Sends UDP packet to master Server containing the string “connect”
with the line feed character (unicode 10) at the end

-> Opens TCP connection to master server

-> Sends TCP packet to master Server containing the string
“connect”+line feed+IP of the server we want to connect to+line feed

MASTER SERVER: <- When recieving UDP packet with “connect” the UDP
port for that client get’s saved

<- When recieving TCP packet that has “connect” in the first line
(unicode 10 is used as a newline).

	WHEN FOUND:
-> Via the client’s TCP socket: Send UDP ip&port of server to client
[packet: buffer_s8 (-1), buffer_string (ip), buffer_string (port)]
-> Via the server’s TCP socket: Send UDP ip&port of the client to
server [packet: buffer_s8 (-1), buffer_string (ip), buffer_string
(port)]

	WHEN NOT FOUND:
-> Send not found packet to client via TCP [packet: buffer_s8 (-2)]

CLIENT: <- Wait for packet of master server

	-> When id -2 (not found): Connect directly to the server

	-> When id -1 (found): Save the two strings, convert the port to a
real and connect to server via UDP and the recieved ip&port
(Knock-Knock) [packet: buffer_s8 (-3)]

SERVER: <- Wait for packet of master server

	-> When id -1 (found): Save the two strings, convert the port to a
real and connect to client via UDP and the recieved ip&port
(Knock-Knock) [packet: buffer_s8 (-3)]

<- Wait for incoming client Knock-Knock packet (-3):

	-> When not already connected with this client: add it to the
connected clients and send a welcome packet via UDP back to the
client that sent this packet [packet: buffer_s8 (-4)}

CLIENT:

-> When recieving the welcome packet: Mark client as connected.

-> When not recieving a welcome packet after a timeout: Tell the
player the connection failed

Without hole punching the client simply sends the Knock-Knock packets to
the server and waits for the servers welcome message.

 Index

Index

 GMnet PUNCH Manual: Index

GMnet PUNCH Manual: Index

Welcome to the manual for GMnet PUNCH.

This manual will guide you through the setup of GMnet PUNCH and also
provides some technical information.

The tutorial is only meant to be used if you use GMnet PUNCH on it’s
own. It does not apply to you when using GMnet ENGINE.

Some pages may reference “udphp”. This was the old name of this product,
and for this reason all scripts start with the prefix udphp_.

About GMnet PUNCH

	Introduction

	What is UDP hole punching?

	Requirements

Tutorial

	Implementing GMnet PUNCH in your game

	obj_control

	Server

	Client

	Lobby

Technical information

	Function reference

	“Protocol”

Support

Please use the `forums <../../forum>`__ for support. We will answer
there.

 GMnet ENGINE Manual: Index

GMnet ENGINE Manual: Index

Welcome! Below you will find all pages of this manual. If you are new,
start with the tutorial.

Some sections may have a PLUS prefix. These pages are only relevant
if you are using GMnet ENGINE. If you are GMnet CORE or if you disabled
GMnet PUNCH in the settings, these pages do not apply for you. For more
information, check the page on differences between GMnet CORE and
ENGINE

Note: GMnet ENGINE was previously called the “HappyTear Multiplayer
Engine” (or HTME for short). This name may be still present on some
pages of the manual, also all scripts and files are prefixed with “HTME”
for this reason. GMnet PUNCH was previously called UDPHP, the same
applies for it.

Tutorial / Getting Started

This tutorial will guide you through the creation of the platformer that
comes with the engine and teaches you how to use the engine. 0. What is
GMnet ENGINE? 1. Basic
configuration 2. **PLUS** - Setup GMnet
PUNCH 3. **PLUS** - Hosting a mediation
server 4. Starting the
engine 5. Setting up the basic
platformer 6. The network
controller 7. Adding a
player 8. A second room and
doors 9. Making an overlay that shows the name
of connected players 10. Adding
day/night 11. Creating a chat
system 12. Conclusion / What’s
next 13. **PLUS** - Bonus 1 - ONLINE
lobby 14. Bonus 2 - Global Sync (Sync a pool
of variables editable by all) 15. Bonus 3
- LAN lobby 16. Bonus 4 - Event Handlers
for Connecting/Disconnecting 16. Bonus 5
- RPC

Important Concepts

	Local and remote Instances

	Instance scope and rooms

	Players and Playerhashes

	States of the engine

	Variable Groups

	mp_map_syncIn and mp_map_syncOut

	VarGroup SyncTypes (mp_type)

	Tolerance

	Buffer types

	CHAT Interface

	PLUS - GMnet PUNCH

	PLUS - Master server (GMnet
GATE.PUNCH)

	Signed packets

	The debug overlay

	PLUS - GMnet GATE.TESTER

Basic Function Reference

Sync Functions (mp_*) * mp_sync

	mp_unsync

	mp_stayAlive

	mp_add

	mp_addPosition

	mp_addBuiltinBasic

	mp_addBuiltinPhysics

	mp_setType

	mp_tolerance

	mp_map_syncIn

	mp_map_syncOut

Tools

	htme_isLocal

	htme_clientIsConnected

	htme_clientConnectionFailed

	htme_isStarted

	htme_isServer

	htme_getPlayers

	htme_findPlayerInstance

	htme_getPlayerNumber

	htme_clientDisconnect

	htme_serverDisconnect

	htme_serverShutdown

CHAT Interface

	mp_syncAsChatHandler

	mp_chatGetQueue

	mp_chatSend

	htme_chatGetMessage

	htme_chatGetSender

Online Lobby

	udphp_downloadServerList

LAN Lobby

	htme_startLANsearch

	htme_stopLANsearch

Global Sync

	htme_globalGet

	htme_globalSet

	htme_globalSetFAST

Event handlers

	htme_serverEventHandlerConnecting

	htme_serverEventHandlerDisconnecting

Configuration

	htme_init

More documentation may be added later. You can find a documentation of
every script in the header of the script files.

FAQ and More

	Extending the Engine / Advanced Use

	How to update

More will be added to this section later.

Support

Please use the `forums <../../forum>`__ for support. We will answer
there.

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		GMnet Manual

 		Getting Started

 		Tutorial

 		What is GMnet ENGINE?

 		Basic configuration

 		Adding the engine to a project

 		Configuration

 		Setup GMnet PUNCH

 		GMnet PUNCH configuration

 		Hosting a master server

 		Hosting

 		Starting the engine

 		The menu

 		Connection done!

 		Setting up the basic platformer

 		1. Setup our game room

 		2. Create a wall

 		3. Create the player object

 		4. Test

 		The network controller

 		Adding a player

 		The create event

 		Some things needed when using mp_add

 		Setting up controls for synchonization

 		Test

 		A second room and doors

 		Some technical stuff

 		Overlay that shows the name of connected players

 		Adding day and night

 		Increasing the time

 		Day and night

 		That's not right...

 		Done!

 		Chat

 		Adding a CHAT handler

 		Sending a message.

 		Recieving messages

 		Display the chat.

 		Private messages

 		Conclusion / What's next

 		Bonus: An ONLINE lobby

 		Testing the lobby

 		The new concepts: Gamenames

 		Data strings

 		Building the lobby

 		How can my clients get the gamename and data strings after they connected?

 		Anything missing?

 		Bonus: Global Sync

 		How it works

 		Bonus: A LAN lobby

 		The new concepts: Gamenames

 		Data strings

 		Setting broadcast settings.

 		Building the lobby

 		Anything missing?

 		Bonus: Event Handlers for Connecting/Disconnecting

 		Basic example

 		What is the return value for?

 		Getting more information about the player

 		Bonus: RPC

 		Setup

 		The RPC protocol

 		Creating a script to send messages

 		Recieving RPCs

 		Returning the value and sending it back

 		Concepts

 		Buffer types

 		Strings

 		Booleans (Reals with 0/1; false/true)

 		Reals (Numbers)

 		CHAT Interface

 		Tutorial

 		Commands

 		The debug overlay

 		F12: Toggle overlay

 		F1: All instances

 		Instance details

 		F2: Visible instances

 		F3: Players

 		F4: Invisible instances

 		F5: Instances in cache

 		F6: Global sync

 		F7: CHAT Interface Channels

 		F8: Signed packets sent

 		F9: Signed packets inbox

 		F10: Maps and Lists

 		F11: Disconnect - Client only

 		Check if overlay is enabled

 		Delta time and room_speed

 		room_speed

 		room_speed limits

 		Delta time

 		Delta time setup

 		GMnet GATE.TESTER - The master server testing tool

 		Local and remote Instances

 		mp_map_syncIn and mp_map_syncOut

 		Technical explanation

 		PLUS - Master server (GMnet GATE.PUNCH)

 		Players and Playerhashes

 		Instance scope and rooms

 		Signed packets

 		States of the engine

 		VarGroup SyncTypes (mp_type)

 		Tolerance

 		PLUS - GMnet PUNCH

 		UPnP

 		Variable Groups

 		Create a new VarGroup:

 		Change the SyncType of the group:

 		Give the group a Tolerance:

 		Functions

 		Sync Functions

 		mp_add(groupname,variables,datatype,interval)

 		mp_addBuiltinBasic(groupname,interval)

 		mp_addBuiltinPhysics(groupname,interval)

 		mp_addPosition(groupname,interval)

 		mp_map_syncIn(varName, variable)

 		mp_map_syncOut(varName, variable)

 		mp_setType(group,type)

 		mp_stayAlive()

 		mp_sync()

 		mp_tolerance(groupname,tolerance)

 		mp_unsync()

 		Tools

 		htme_clientConnectionFailed()

 		htme_clientDisconnect()

 		htme_clientIsConnected()

 		htme_disconnectNow()

 		htme_findPlayerInstance()

 		htme_getPlayerNumber(playerhash)

 		htme_getPlayers()

 		htme_isLocal()

 		htme_isLostConnection()

 		htme_isServer()

 		htme_isStarted()

 		htme_serverDisconnect(player)

 		htme_serverShutdown(player)

 		htme_syncGroupNow()

 		Chat

 		htme_chatGetMessage(chat_queue_entry)

 		htme_chatGetSender(chat_queue_entry)

 		mp_chatGetQueue()

 		mp_chatSend(message,[to])

 		mp_syncAsChatHandler(channel)

 		Online Lobby

 		udphp_downloadServerList(...)

 		LAN Lobby

 		tme_startLANsearch(port,[gamefilter])

 		Global Sync

 		htme_globalGet(name)

 		htme_globalSet(name,value,datatype)

 		htme_globalSetFast(name,value,datatype)

 		Events

 		htme_error_message_handler(message)

 		htme_serverEventHandlerConnecting(script)

 		htme_serverEventHandlerDisconnecting(script)

 		Config

 		htme_config()

 		Extending the Engine / Advanced Use

 		Interpolation

 		Troubleshooting

 		Check if client is connected

 		Use htme_getPlayers()

 		Why do i control two instances

 		Use htme_isLocal()

 		Use Dual window extension

 		Use Windows exe and game maker player export

 		Error on connect

 		Port is a real

 		Fire input not received on client

 		Send only when needed

 		Player numbers

 		Get current player

 		Get remote player number from object

 		How to quit/disconnect

 		Use htme_disconnectNow()

 		How to update

 		Recent updates

 		1.2.2 - CHAT Interface, Event Handlers, RPCs, MIT License

 		1.2.1 - Introducing a better online lobby and a LAN